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ABSTRACT

This thesis describes the development and in-depth empirical investigation ofa
method, called BootMark, for bootstrapping the marking up of named entities
in textual documents. The reason for working with documents, as opposedto
for instance sentences or phrases, is that the BootMark method is concerned
with the creation of corpora. The claim made in the thesis is that BootMark
requires a human annotator to manually annotate fewer documents in order to
produce a named entity recognizer with a given performance, than would be
needed if the documents forming the basis for the recognizer were randomly
drawn from the same corpus. The intention is then to use the created named en-
tity recognizer as a pre-tagger and thus eventually turn the manual annotation
process into one in which the annotator reviews system-suggested annotations
rather than creating new ones from scratch. The BootMark method consistsof
three phases: (1) Manual annotation of a set of documents; (2) Bootstrapping
– active machine learning for the purpose of selecting which document to an-
notate next; (3) The remaining unannotated documents of the original corpus
are marked up using pre-tagging with revision.

Five emerging issues are identified, described and empirically investigated
in the thesis. Their common denominator is that they all depend on the real-
ization of the named entity recognition task, and as such, require the context
of a practical setting in order to be properly addressed. The emerging issues
are related to: (1) the characteristics of the named entity recognition task and
the base learners used in conjunction with it; (2) the constitution of the set of
documents annotated by the human annotator in phase one in order to start the
bootstrapping process; (3) the active selection of the documents to annotate in
phase two; (4) the monitoring and termination of the active learning carried out
in phase two, including a new intrinsic stopping criterion for committee-based
active learning; and (5) the applicability of the named entity recognizer created
during phase two as a pre-tagger in phase three.

The outcomes of the empirical investigations concerning the emerging is-
sues support the claim made in the thesis. The results also suggest that while
the recognizer produced in phases one and two is as useful for pre-tagging as
a recognizer created from randomly selected documents, the applicability of
the recognizer as a pre-tagger is best investigated by conducting a userstudy
involving real annotators working on a real named entity recognition task.





SAMMANFATTNING

Denna avhandling beskriver arbetet med att utveckla och utvärdera en metod,
kallad BootMark, f̈or att m̈arka upp f̈orekomster av namn i textdokument. An-
ledningen till att arbeta med dokument istället för, till exempel, meningar eller
fraser,är att syftet med BootMark̈ar att producera korpusar. Tesenär att Boot-
Mark till åter en m̈ansklig annoterare att m̈arka upp f̈arre dokument f̈or att
kunna tr̈ana en namnigenkännare till en given prestanda,än vad som skulle ha
beḧovts om namnigenk̈annaren tr̈anats p̊a ett slumpm̈assigt urval av dokument
från samma korpus. Vidarëar det ẗankt att namnigenk̈annaren ska användas
i ett förprocessningssteg i vilket namnen i de resterande texterna i korpusen
först m̈arks upp automatiskt för att sedan revideras manuellt. På s̊a s̈att ska
annoteringsprocessen gå från att vara baserad på att den m̈anskliga annoteraren
manuellt m̈arker upp namn, till att annoteraren istället tar sẗallning till huruvida
de automatiskt f̈oreslagna annoteringarna behöverändras.

BootMark-metoden består av tre faser. Den första fasen syftar till att pro-
ducera en liten samling korrekt uppmärkta dokument att användas f̈or att starta
fas tv̊a. Den andra fasen nyttjar så kallad aktiv maskininl̈arning ocḧar nyckeln
till att BootMark kan reducera m̈angden dokument som en användare beḧover
annotera. I den tredje och sista fasen nyttjas den i fas två konstruerade namn-
igenk̈annaren f̈or att omvandla annoteringsprocessen till en gransknings-dito.

I samband med beskrivningen av BootMark identifieras fem praktiskt orien-
terade fr̊agor vars gemensamma nämnarëar att de kr̈aver ett konkret samman-
hang f̈or att kunna besvaras. De fem frågorna r̈or: (1) namnigenk̈annings-
uppgiftens och de d̈artill nyttjade maskininl̈arningsmetodernas karaktäristik,
(2) sammans̈attningen av den m̈angd dokument som ska märkas upp i fas ett
och ligga till grund f̈or den aktiva inl̈arningsprocessen i fas två, (3) anv̈andandet
av aktiv maskininl̈arning i fas tv̊a, (4) övervakningen av, och villkor för att
automatiskt avbryta inlärningen i fas tv̊a, inklusive ett nytt intrinsiskt stopp-
villkor f ör kommitt́ebaserad aktiv inlärning samt (5) till̈ampbarheten av namn-
igenk̈annaren som förprocessor i fas tre.

Utfallet av experimenten stöder tesen. Fas ett och två i BootMark bidrar till
att reducera den m̈angd dokument en m̈ansklig annoterare behöver m̈arka upp
för att tr̈ana en namnigenkännare med prestanda somär lika bra eller b̈attre
än en namnigenk̈annare som̈ar tr̈anad p̊a ett slumpm̈assigt urval av dokument
från samma korpus.



iv Sammanfattning

Resultaten tyder också p̊a attäven om namnigenkännaren som skapats i fas
ett och tv̊a är lika lämplig att anv̈anda i ett f̈orprocessningssteg som en namn-
igenk̈annare skapad genom träning p̊a slumpm̈assigt utvalda dokument, så b̈or
dess l̈amplighet unders̈okas genom anv̈andarstudier i vilka riktiga anv̈andare
tar sig an en riktig namnigenkänningsuppgift.
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1 INTRODUCTION

Information extraction is the process of analyzing unrestricted text with the
purpose of excerpting information about pre-specified types of entities,the
events in which the entities are engaged, and the relationships between entities
and events. The state-of-the-art of information extraction methods is mani-
fested in the construction of extraction systems that are accurate, robustand
fast enough to be deployed outside the realms of the research laboratories
where they are developed. Still, some important challenges remain to be dealt
with before such systems may become widely used. One challenge is that of
adapting information extraction systems to handle new tasks and operate on
new domains. For instance, a system that works well in a particular setting,
such as the extraction of management succession information from news wire
texts, is unlikely to work at all when faced with the task of extracting interac-
tions between proteins from biomedical texts.

The heart of the problem lies in the fact that, at present, full text understand-
ing cannot be carried out by means of computers. In an attempt to circumvent
this problem, we typically specify, in advance, what pieces and types of in-
formation are of interest. Thus, our efforts can be concentrated on constructing
theories, methods and techniques for finding and processing what is believed to
satisfy a prototypical need for information with respect to the domain at hand.
The key to information extraction is the information need; a well-specified
need allows us to focus on the parts of the information that satisfy the need,
while the rest can be ignored. Herein lies a tension. On the one hand, a specific
and unambiguously defined information need is a prerequisite for successful
information extraction. On the other hand, this very specificity of the informa-
tion need definition causes problems in adapting and constructing information
extraction systems; any piece of information that falls outside a given defi-
nition of an information need will not be recognized by the system, simply
because it does not look for such pieces.

Partly to accommodate the necessary specificity, information needs are of-
ten defined in terms of examples of what should be covered by the information
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extraction system fulfilling the need. Thus, the creation of state-of-the-art in-
formation extraction systems has come to rely increasingly on methods for
automatically learning from examples. Such training examples are often pro-
vided to a machine learner in the form of a body of texts, a corpus, that has
been annotated so as to make explicit the parts and types of the corpus consti-
tuting the focus of the information extraction task at hand. The assumption in
the research community seems to be that the annotation of data, which is later
used for machine learning, is better than manually writing rules. Nevertheless,
the question of why we should opt for the annotation of what is important in
a text, instead of directly addressing that knowledge by means of explicitly
written rules remains one which clearly deserves a moment of contemplation.
Addressing the issues pertaining to the creation of information extraction sys-
tems at the level of data instead of at the system’s level directly arguably has
several pivotal advantages. Decoupling the characteristics of the training data
and the extraction system induced from the data facilitates, for instance, fu-
ture extensions of the data by adding further details concerning already known
information, or the re-creation of information extraction systems based on a
novel machine learning technique that was not known at the time the data was
collected and annotated.

In an investigation concerning the marking-up of data versus the manual
construction of a system, Ngai and Yarowsky (2000) contrast annotation with
rule writing for the task of base noun phrase chunking; the recognition ofnon-
recursive noun phrases in text. They air a voice in favor of annotating over rule
writing. Their investigation compares an annotation process based on active
machine learning (introduced in chapter 4) for selecting the sentences to be
annotated, with the process of manually specifying rules. Ngai and Yarowksy
find that base noun phrase chunkers learned from the annotated data outper-
forms the chunkers based on manually constructed rules, even when consider-
ing the human effort spent. They point out that annotating data has a number
of advantages over writing rules:

• Annotation-based learning can continue over a long period of time; the
decisions needed to be made by the annotator concern information ap-
pearing in a relatively local context. Writing rules, on the other hand,
requires the human to be aware of all potential rule interdependencies.
Over time, the latter task may take precedence and obscure an initially
transparent view of the task through the rules.

• The efforts of several annotators are easier to combine, than are the
efforts of several rule writers. Given that the annotators use the same
annotation guidelines, their relative performance may be measured and
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corrective actions can be taken accordingly. The local contexts of the
annotation decisions allow for isolation of hard cases and their deferral
to, for instance, external reviewers. Rule interdependencies on the other
hand, may cause the combination of rule sets to result in a set exhibiting
undesired side effects when applied.

• Constructing rules require more of the human involved in terms of lin-
guistic knowledge, familiarity with the language in which to specify the
rules, and an eye for rule dependencies.

• Creating annotations facilitates data re-use. An annotated corpus can be
used by learning schemes other than the initially envisioned ones, and
the performance of a system may thus be improved without altering the
mark-up in the underlying data.

Ngai and Yarowsky (2000) also point out that based on their empirical obser-
vations, rule writing tends to result in systems exhibiting more variance than
the corresponding systems created by training on annotated text.

Although the above discussion on annotation versus rule writing may por-
tray the task of annotation as a rather simple one, it should be pointed out that
this is not necessarily the case. Depending on the task, marking up linguistic
content in text may be quite complex. The comprehensiveness of available an-
notation guidelines may serve as indicators of the complexity of the annotation
task. For instance, a seemingly simple task such as the detection and recogni-
tion of entity mentions1 in English text, as outlined in the context of Automatic
Content Extraction (Linguistic Data Consortium 2008), is accompanied by a
document spanning more than 70 pages devoted solely to the mark-up of five
classes of entities; persons, organizations, geographical/social/political enti-
ties, locations, and facilities.

Another way of illustrating the difficulties with annotating linguistic phe-
nomena is by looking at the agreement (or lack thereof) between human an-
notators operating on the same task and texts. The inter-annotator agreement
for a given task is of particular interest since the agreement provides theup-
per bound on the performance expected by an annotation system inducedfrom
the marked-up data. That is, a system that is created by means of machine
learning will, at best, perform as good as the examples from which the system
was learned. Generally, the more complex structures to mark up, the lower the
inter-annotator agreement scores.

1The annotation guidelines by the Linguistic Data Consortium (2008) define anentity to
be “... an object or set of objects in the world”. Named entity recognition isa core sub-task in
information extraction, and as such it is further elaborated on in chapter 2.
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Furthermore, while annotation may facilitate the re-use of data, it does not
mean that data re-use is guaranteed to be successful. For instance, datathat has
been selected and annotated to fit the characteristics of a particular machine
learning algorithm may not at all be useful in conjunction with a different
learning algorithm (this matter is discussed in section 5.6). That said, the issue
of difficulty in producing high quality annotated data has been raised. A major
bottleneck in machine learning is the acquisition of data from which to learn;
this is an impediment due to the requirement of large resources in terms of
time and human expertise when domain experts are to mark up data as needed
in the learning process. Thus, obtaining good training data is a challenge in its
own right.

This thesis describes the development of a method – BootMark – for the
acquisition of annotated data from which to learn named entity recognizers.
Names constitute references to real-world entities that participate in events,
and are engaged in relations to other entities. As such, names provide viable
ways of obtaining handles to information that may fit a given extraction task.
If the acquisition of marked-up texts could be made easier, in some respect,
we would be one step closer towards making information extraction available
to a broader public. It is within this context that the present thesis should be
understood.

1.1 Thesis

I present a method for bootstrapping the annotation process of named enti-
ties in textual documents. The method, called BootMark, is focused on the
creation of annotated data, as opposed to the creation of classifiers, andthe
application of the method thus primarily results in a corpus of marked up tex-
tual documents. BootMark requires a human annotator to manually mark-up
fewer documents in order to produce a named entity recognizer with a given
performance, than would be needed if the documents forming the base for the
recognizer were randomly drawn from the same corpus.

1.2 Method and organization of the dissertation

Part I contains the background needed to understand the rest of the disserta-
tion. Named entity recognition is introduced in chapter 2. The necessary con-
cepts in machine learning are presented in chapter 3, followed by an extensive
literature survey of active machine learning with a focus on applications in
computational linguistics in chapter 4, and a survey of support for annotation
processes in chapter 5.
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Part II constitutes the core of the dissertation. Chapter 6 introduces and
elaborates on a three-phase method called BootMark for bootstrapping thean-
notation of named entities in textual documents. In the process of describing
BootMark, five issues emerge that need to be empirically tested in order to as-
sess the plausibility of the BootMark method. These emerging issues are the
subject matter of part III. Chapter 6 concludes part II by relating the BootMark
method to existing work.

Part III provides an account of the empirical work conducted, all related to
the set of emerging issues outlined in part II. Chapter 7 introduces an experi-
mental setting in which the major concerns raised in part II pertaining to the
plausibility of the proposed annotation method are empirically tested.

Chapter 8 describes the first set of experiments, related to the first emerging
issues outlined in chapter 6. The goal of the experiments is to provide a base-
line for experiments to come. This is accomplished by an investigation of the
characteristics of a number of base learners with respect to their training and
testing time, as well as their accuracy on the named entity recognition task.
The experiments also include parameter selection, the use of automatic fea-
ture set reduction methods, and, for the best base learner also the generation of
learning curves visualizing its ability to learn as more data becomes available.

Chapter 9 provides an extensive empirical investigation into the applica-
bility of active machine learning for the purpose of selecting the document to
annotate next based on those that have been previously marked-up. The investi-
gation pertains to the most crucial of the emerging issues outlined in chapter 6.

Chapter 10 addresses the issue of the constitution of the document set uti-
lized for starting the bootstrapping process.

Chapter 11 examines ways to monitor the active learning process, as well
as to define a stopping criterion for it having available an annotated, held-out
test set.

Chapter 12 concludes part III with a discussion concerning the use of the
named entity recognizer learned during the bootstrapping phase of BootMark
for marking up the remainder of the documents in the corpus.

Finally, part IV ends the dissertation with a summary, conclusions, and fu-
ture work.

It should be noted that the experiments introduced and carried out in the fol-
lowing are considered asindicativeof the plausibility of the BootMark method.
Thus, the empirical investigations do not constitute attempts atproving the
method correct. Whereas the experiments indeed are instantiations of partic-
ular issues crucial to the realization of the method as such, their outcomes
should be considered fairly loosely tied to the method proper. For instance,the
fact that a particular base learner is shown to yield the best named entity rec-
ognizer in the particular setting described in chapter 8, should not be takenas
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evidence of the base learner being the most suitable one for other settings as
well. Due to the purpose of the investigations, it makes little sense in accom-
panying the results and related discussions by statistical tests for judging the
significance of the findings; instead, the indications provided by the resultsare
made visible on the form of graphs and tables containing performance results
and variations, as well as learning curves.

A trade-off between the amount of data used for the experiments and the
number of experiments conducted is in effect. I chose to explore more experi-
ment configurations, such as the number of base learners involved in chapter 8
and, in particular, the number of uncertainty and selection metrics utilized in
chapter 9, rather than using more data. As an example, the 216 base learner
configurations used in chapter 8 required the better part of six months and sev-
eral different machines to run to completion. If the amount of data involved
would have been increased, it would have had severe effects on the execution
time.

1.3 Contributions

Apart from the dissertation as a whole, some particular contributions merit
attention in their own right since they may prove useful to other involved in
field of active learning involving named entity recognition. The contributions
include:

• The definition and evaluation of a number of metrics for quantifying
the uncertainty of a single learner with respect to the classification of a
document (section 9.2).

• The definition and evaluation of a number of metrics for quantifying
decision committee disagreement with respect to the classification of
a document, including the definition of Weighted Vote Entropy (sec-
tion 9.3).

• A way of combining the results from two view classifiers in Co-testing
in such a way that the contribution of each view classifier is weighted ac-
cording to its classification performance on the training data, thus main-
taining the relative compatibility of the views (section 9.3.4).

• An intrinsic stopping criterion for committee-based active learning. The
realization of the stopping criterion is based on the intrinsic character-
istics of the data, and does not require the definition, nor setting of any
thresholds (section 11.3).
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• A strategy for deciding whether the predicted label for a given instance
(a token in the context of a document) should be suggested as a label
to the human annotator during pre-tagging with revision. Employing the
described selective strategy may allow for the use of pre-tagging with
revision during the bootstrapping phase, something which otherwise ap-
pears volatile (section 12.2).





Part I

Background





2 NAMED ENTITY

RECOGNITION

Named entity recognition is the task of identifying and categorizing textual ref-
erences to objects in the world, such as persons, organizations, companies, and
locations. Figure 2.1 contains an example sentence, taken from a corpus used
in the Seventh Message Understanding Conference (MUC-7).2 The names in
the example sentence in the figure are marked-up according to four of the seven
name categories used in MUC-7: organization, location, date, and time.

Named entity recognition constitutes an enabling technique in many appli-
cation areas, such as question-answering, summarization, and machine transla-
tion. However, it was within information extraction that named entity recogni-
tion was first thoroughly researched. Thus, to understand named entity recogni-
tion, it is described here in the context of a prototypical information extraction
system.

Information extraction is the process of analyzing unrestricted text with
the purpose of picking out information about pre-specified types of entities,
the events in which the entities are engaged, and the relationships between
entities and events. In this context, the purpose of named entity recognition is
to identify and classify the entities with which the information extraction task
is concerned. As such, named entity recognition is arguably a well-researched
and well-understood field; a good overview is given by Nadeau and Sekine
(2007).

Introductions to information extraction are provided by, for instance, Cowie
and Lehnert (1996), Grishman (1997), and Appelt and Israel (1999), while
Kaiser and Miksch (2005) give a more recent survey of the field. The core
definition of information extraction evolved during the MUC series which took
place in the 1990’s (Grishman and Sundheim 1996; Chinchor 1998).

Figure 2.2 illustrates the organization of a typical information extraction
system. Usually, an extraction system is made up from a cascade of different
modules, each carrying out a well-defined task and working on the outputof
previous modules. At the top end of figure 2.2, text is fed to the system and

2The MUC-7 corpus is further described in section 7.1.
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<ENAMEX TYPE=”ORGANIZATION”>Massport</ENAMEX> officials said the replacement
<ENAMEX TYPE=”ORGANIZATION”>Martinair</ENAMEX> jet was en route from <ENAMEX

TYPE=”LOCATION”>Europe</ENAMEX> to <ENAMEX TYPE=”LOCATION”>New Jersey</ENAMEX>, but was
diverted to <ENAMEX TYPE=”LOCATION”>Logan</ENAMEX> <TIMEX TYPE=”DATE” >Tuesday</TIMEX>

<TIMEX TYPE=”TIME” >afternoon</TIMEX>.

Figure 2.1: An example sentence in which named entities are marked.

passed through alexical analysisphase which involves segmenting the doc-
ument into, for example, sentences and tokens. The tokens are then analyzed
in terms of part-of-speech and syntactic functions. Next, thename recogni-
tion module harvests the text for name expressions referring to, for instance
persons, organisations, places, monetary expressions, and dates. The partial
syntaxstep includes identifying nominal and verbal groups as well as noun
phrases. Thescenario patternsmodule applies domain and scenario specific
patterns to the text in order to resolve higher level constructs such as prepo-
sition phrase attachment.Reference resolutionand discourse analysis, then,
relate co-referring expressions to each other, and try to merge event structures
found so far. Finally, templates expressing the structured version of the answer
to the information need are generated. As depicted in figure 2.2, named entity
recognition constitutes an integral and crucial part of a typical informationex-
traction system since many subsequent modules depend on the output of the
named entity recognizer.

The termnamed entity recognitionwas originally introduced in MUC-6 in
1995 (Grishman and Sundheim 1996). The task subsequently evolved during
a number of different venues, including MUC-7 and the Second Multilingual
Entity Task (MET-2) (Chinchor 1998), the HUB-4 Broadcast News technol-
ogy evaluation (Chinchor, Robinson and Brown 1998), the Information Re-
trieval and Extraction Exercise (IREX) (Sekine and Ishara 2000), two shared
tasks conducted within the Conference on Computational Natural Language
Learning (CoNLL) (Tjong Kim Sang 2002a; Tjong Kim Sang and Meul-
der 2003), and the Automatic Content Extraction (ACE) program (Doddington
et al. 2004).

Throughout the MUC series, the termnamed entitycame to include seven
categories; persons, organizations, locations (usually referred to asENAMEX),
temporal expressions, dates (TIMEX), percentages, and monetary expressions
(NUMEX). Over time, the taxonomies used for named entity recognition have
been re-defined. The seven name categories used in the MUCs were extended
to include the typesfacility andgeo-political entityin the ACE program, while
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Figure 2.2: The organisation of a typical information extraction system, adopted
from Yangarber and Grishman (1997).

types such asproteinandDNA are part of the taxonomy used in the develop-
ment of the GENIA corpus (Collier et al. 1999). More recently, Sekine and
Nobata (2004) report ongoing work concerning what they refer to asextended
named entity recognition, which comprises 200 categories of names.

Research on named entity recognition has been carried out for a number
of languages other than English, for example, German, Spanish, and Dutch
in the context of the CoNLL shared tasks (Tjong Kim Sang 2002a; Tjong
Kim Sang and Meulder 2003), Japanese in IREX (Sekine and Ishara 2000), and
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Swedish (Kokkinakis 2004; Borin, Kokkinakis and Olsson 2007). As Nadeau
and Sekine (2007) point out, the domain and genre to which named entity
recognition has been applied has not been varied to a great extent. The data sets
used often consists of news wire texts, transcribed broadcast data, orscientific
texts.

While the first systems for recognizing names were based on pattern match-
ing rules and pre-compiled lists of information, the research community has
since moved towards employing machine learning methods for creating such
systems. The learning techniques applied include Decision Trees (Sekine 1998),
Artificial Neural Networks (Carreras, M̀arquez and Padró 2003), Hidden Mar-
kov Models (Bikel, Schwartz and Weischedel 1999), Maximum Entropy Mod-
els (Borthwick et al. 1998), Bayesian learning (Nobata, Collier and Tsujii
1999), Nearest Neighbor learning (Tjong Kim Sang 2002b), and Conditional
Random Fields (McCallum and Li 2003).

A detailed description of a machine learning set-up used for named entity
recognition is available in chapter 8, including the specification of the learning
task, as well as the features used to represent training examples.



3 FUNDAMENTALS OF

MACHINE LEARNING

This chapter introduces the concepts of machine learning methods used in the
remainder of the thesis; as such, the chapter serves as a pointer to additional
information, rather than a complete beginner’s guide to the subject. Extensive
introductions to machine learning are given by, for instance, Mitchell (1997)
and Witten and Frank (2005). Mitchell (1997: 2) defines machine learningas:

A computer program is said to learn from experienceE with respect to
some class of tasksT and performance measureP, if its performance at
tasks inT, as measured byP, improves with experienceE.

The definition naturally gives rise to additional questions. What is experience,
and how can it be represented in a way beneficial to a computer program?
How are the representations of experience and tasks related? What techniques
are there to learn from experience? How can the performance of a learned
computer program be measured? These questions are all addressed in the fol-
lowing.

3.1 Representation of task and experience

The way experience is represented is closely related to the way the task to
be solved is expressed, both in terms of data structures used, and in terms
of the granularity in which the experience – knowledge about the domain –
is expressed. A common data structure to use for representation is avector
of features(often referred to asattributes). A feature denotes an aspect, an
important piece of information, or a clue to how experience is best represented.
Each feature can take on avalue. As an example, the representation of an
experiencee∈ E from which a computer program is to learn can be written as:

e= (v1,v2, . . . ,vk−1,vk)

wherev1 to vk are values of features 1, . . . ,k describing the experiencee.
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The difference between the representation of an experience from which to
learn, and the task to be carried out is usually one attribute. In the example
above, assume that the feature with valuevk is the feature that the computer
program is to learn to predict. The range of possible values thatvk represents
is called thetarget classof values. In the learning situation, the computer pro-
gram is given the completee as an example from which to learn. When the
learned experience is to be applied, the example handed to the computer pro-
gram is missing the valuevk such that

e= (v1,v2, . . . ,vk−1, )

An experience from which to learn is often referred to as anexample(train-
ing example), while the corresponding task of classifying (or predicting) the
experience as belonging to a particular class (or being a particular value)is
referred to as aninstance. The termsexampleandinstanceare henceforth used
interchangeably.

When the experience, or task, is such that the outcome can be categorized
into discrete categories among which there is no relative order, the learning
is said to pertain toclassification. If, on the other hand, the outcome of the
learning is predicting a numeric quantity, the learning is said to pertain tore-
gression.

Thehypothesis spaceis the space consisting of all possible feature values
used for representing experience. Theversion spaceconsists of all those com-
binations of feature values that areconsistentwith the training examples used
for representing the experience. A hypothesis is said to be consistent witha set
of training examples if the hypothesis predicts the same target class value as is
represented by the training examples.

3.2 Ways of learning from experience

How can a program learn from experience? Traditionally, there are two strands
to learning:supervisedandunsupervisedlearning. In supervised learning, the
experiences from which to learn are commonly presented as pairs consisting of
an example and the correct class label (or value) associated with the example;
this is the case in the above description of experience. In unsupervised learning
on the other hand, the examples provided to the learner3 are not associated with
any class labels or values at all. Here, the task of the learner is to find interest-
ing structures, or patterns, in the data. Between supervised and unsupervised
learning issemi-supervisedlearning, in which the learner typically has access

3The termsmachine learnerandlearnerare henceforth used interchangeably.
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to some labeled training examples and a lot of unlabeled examples. An in-
troduction to semi-supervised learning is given in the bookSemi-Supervised
Learningby Chapelle, Scḧolkopf and Zien (2006).

Although this thesis is mainly concerned with supervised learning methods
– the ones brought up in the present section are those subject to investigation
in chapter 8 – one example of semi-supervised learning called Co-training is
introduced in the context of active learning in chapter 4.

3.2.1 Decision tree learning

A decision tree is a directed acyclic graph in which the nodes constitute tests
between features, the branches between a node and its children correspond to
the values of the features, and leaves represent values of the target class.

The creation of a decision tree can be defined recursively. Initially, select
the feature which best, on its own, predicts the correct classes of the training
examples available. The first feature selected constitutes the root node ofthe
tree. Branches corresponding to all possible values of the feature arecreated
(one branch per value). In effect, the original set of training examplesis now
divided into sub-parts related to each value/branch. Continuing with the sub-
parts, the process is repeated; for each sub-part, select the featurethat best
predicts the target classes of the training examples in the set. This process is
repeated until all training examples corresponding to a node have the same
target class. The decision tree learning approach is calleddivide-and-conquer.

When classifying an instance by means of a decision tree, the tree is tra-
versed from the root, going towards the leaves, comparing the feature values in
the instance with those available at the nodes in the tree until a leaf is reached.
The instance is then assigned the class of the leaf at which the traversal ofthe
tree ends.

Decision trees are robust with respect to noise in the input data, they are
also relatively easy to interpret by a human, and can be used for classification
as well as regression.

Two decision tree learners are used in the present thesis, J48 and REPTree,
described in Witten and Frank 2005. The former is a re-implementation of the
well-known C4.5 (Quinlan 1993).

3.2.2 Lazy learning

Lazy learning is also known as instance-based learning. The name lazy learn-
ing refers to the way that the learning is carried out. In the learning phase,
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training examples are merely collected, while the bulk of the work is carried
out during the application phase. The lazy learning method employed in this
thesis is calledk-nearest neighbor, or kNN for short. The idea is that an in-
stance to classify is compared to its nearest neighbors – already collected ex-
amples – and the classification of the instance is made based on the classes
of the neighbors. Thek in kNN refers to the number of neighbors to consider
when calculating the class or value of a given instance. kNN can be used for
classification as well as regression.

The approach taken makes nearest neighbor fast in the learning phase, but
slow to classify new data, as most of the computations required are made at
that point. The benefits of using kNN include that when classifying a given
instance, only the examples close to the instance have to be taken into con-
sideration; the classification is based on local characteristics of the hypothesis
space. This means that kNN can be used to model complex phenomena by us-
ing fairly simple, local, approximations. The kNN implementation used in this
thesis is called IBk (Witten and Frank 2005).

3.2.3 Artificial neural networks

Artificial neural networks are non-linear statistical data modeling tools, used
for classification or regression by modelling the relationships between input
and output data. An artificial neural network can be described as a graph in
which the nodes, the artificial neurons, are connected by arcs. A neural network
as a whole models a function for mapping the network’s input to its output.
That function, in turn, is represented as the combination of sub-functions, each
of which is manifested as the mapping between the input and output of a node
in the network. The strength, or influence, of a sub-function is modeled as
a weight on the arc leading to the node representing the function. Training
an artificial neural network essentially involves first designing the network in
accordance with the task and data at hand, and then deciding the weights of
the arcs based on observations of the training examples.

There is a multitude of artificial neural networks available. The type of net-
work used in this thesis is calledRadial Basis Function network, RBF network
for short (Powell 1987). An RBF network is afeedforward network, meaning
that it is a directed acyclic graph. An RBF network typically consists of three
layers of nodes; the input layer, a hidden layer, and the output layer. The two
latter layers are referred to as processing layers. In the hidden processing layer,
the input is mapped onto the radial basis functions representing the nodes.Each
node in the hidden layer can be thought of as representing a point in the space
made up by the training examples. The output from a hidden node can thus be
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conceptualized as depending on the distance between the instance to be clas-
sified and the point in space represented by the node. The closer the two are,
the stronger the output from the node (the more influence the node has on the
final classification of the instance). The distance between an instance anda
point represented by a node is measured by means of a nonlinear transforma-
tion function that converts the distance into a similarity measure. The hidden
nodes are called RBFs since the points for which the strength of the output
of the node is at the same level form a hypersphere or hyperellipsoid. Inthe
case of regression, the network output is realized as a linear combination of the
output of the nodes in the hidden layer. In the case of classification, the output
is obtained by applying asigmoid functionto the output of the hidden nodes.
The sigmoid function, also known aslogistic functionor squashing function,
maps a potentially very large input domain to a small range of outputs.

RBF networks allow for efficient training, since the nodes in the hidden
layer and the nodes in the output layers can be trained independently.

3.2.4 Rule learning

In rule learning, the goal is to learn sets of if-then rules that describe the train-
ing examples in a way that facilitates the decision making required to classify
instances. For each target class in the training examples, rule sets are usually
learned by finding a rule thatcoversthe class in the sense that the rule classifies
the examples correctly. Covering algorithms work by separating the training
examples pertaining to one class from those of other classes, and continuously
adding constraints – tests – to the rules under development in order to obtain
rules with the highest possible accuracy for the given class. The approach is
referred to asseparate-and-conquer(in contrast to the divide-and-conquer ap-
proach taken in decision tree learning).

Two different rule learning algorithms are used in this thesis, JRip and
PART, both of which are described by Witten and Frank (2005).

JRip is an implementation of RIPPER, short forRepeated Incremental Prun-
ing to Produce Error Reduction(Cohen 1995). RIPPER is a separate-and-con-
quer algorithm that employsincremental reduced-error pruningto come to
terms with potentiallyoverfitting the learned set of rules to the training ex-
amples, as well as a global optimization strategy to increase the accuracy of
the rule set. Overfitting means that the classifier learned is too specific to the
training data at hand, and consequently does not generalize well to previously
unseen data. In incremental reduced-error pruning, the rule learnerdivides the
set of training examples into two sub-sets. The first set (the growing set) isused
for learning rules, while the second set (the pruning set) is used for testing the



20 Fundamentals of machine learning

accuracy of the rules as the learning algorithm tries to remove tests from the
rules, that is, prunes them. A pruned rule is preferred over an un-pruned rule if
it performs better on the pruning set.Incrementalreduced-error pruning means
that each rule is pruned directly after being created, as opposed to deferring the
pruning process until all rules have been created.

A global optimization step is used by RIPPER to increase the overall accu-
racy of the rule set by addressing the performance of individual rules. Once the
complete rule set has been generated for a class, two variants of each rule are
produced by using reduced-error pruning. This time, the error pruning phase
is a bit different from the incremental one used to prune rules the first time
around; the difference lies in that instances of the class that are covered by
rules other than the one which is currently being considered for optimization
are removed from the pruning set. The accuracy of the rule measured onthe
remaining instances in the pruning set is used as the pruning criterion. This
procedure is repeated for each rule in the original rule set.

The other rule learning algorithm utilized in the thesis is called PART
(Frank and Witten 1998). The way PART operates makes it possible to avoid
the global optimization step used by RIPPER, and still obtain accurate rules.
Essentially, PART combines the separate-and-conquer approach usedin RIP-
PER with the divide-and-conquer approach used in decision tree learning. The
former is realized as PART builds a rule, and subsequently removes the in-
stances covered by the rule, thus separating the positive examples from the
negative ones. The rule learning then proceeds recursively with the remaining
instances. The divide-and-conquer approach is realized in that PARTbuilds a
pruned C4.5 decision tree for the set of instances currently in focus. The path
leading to the leaf with best coverage is then used to formulate a rule, and the
tree is discarded.

3.2.5 Näıve Bayesian learning

Näıve Bayesian learning is a special case of Bayesian learning, which in turn
is a member of a family of statistical methods called graphical models.

Näıve Bayes constitutes a way of estimating the conditional probability
distribution of the values of the target class, given the values of the features
used for representing the experience. Naı̈ve Bayes builds on applyingBayes
theoremwith strong (näıve) independence assumptions concerning the rela-
tions between the features used for representing experience. Bayes theorem
provides a way of calculating the probability of a hypothesis concerning the
classification of a given instance based on theprior probability that the hy-
pothesis being correct, the probabilities of making various observations once
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the hypothesis is believed to be true, and based on the observed data itself.The
prior probability of a hypothesis reflects any background knowledge about the
chance of the hypothesis being correct, for instance obtained from observations
supporting the hypothesis in the training data. The independence assumption
facilitates the calculation of the estimated probability of an instance belonging
to a given class based on observations of each feature value in isolation inthe
training data, and relating that information to the sought for class using Bayes
theorem.

In the learning phase, a naı̈ve Bayesian learner calculates the frequencies of
the feature values given each possible value of the target class. The frequencies
are then normalized to sum to one, so as to obtain the corresponding estimated
probabilities of the target classes.

In the classification phase, a naı̈ve Bayesian classifier assigns the value of
the target class that has the highest estimated probability, based on information
regarding the feature values used for representing the instance obtained in the
training phase.

In the experiments carried out in part III, two methods based on naı̈ve Bayes
are used;Näıve BayesandNäıve Bayes Updateable(see, for instance, Witten
and Frank 2005). The latter is able to accommodate learning by digesting new
training examples as they are provided, in an incremental fashion, while the
former method does not.

3.2.6 Logistic regression

Despite the fact that the name contains the term regression, previously intro-
duced as pertaining to the prediction of numeric values, logistic regression can
be used for classification. Logistic regression is alinear classificationmethod
suitable for domains in which the features used to describe experience takeon
numeric values. The most basic form of linear classification involves combin-
ing, by addition, the numeric features, with pre-determined weights indicating
the importance of a particular feature to a given class.

Logistic regression makes use of a function for transforming the values of
the target class into something that is suitable for numeric prediction. Since,
in classification, the target class assumes discrete values, predicting the dis-
crete values by means of regression necessitates a mapping from numeric in-
tervals to the target class values. The function used for transforming the target
class values – the transformation function – used in logistic regression is called
the logistic function. The key to the logistic function is that it is able to map
any numbers onto the interval ranging from 0 to 1 (the logistic function is
a common sigmoid function, previously introduced in section 3.2.3 for RBF
networks).
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Training a logistic regression classifier, also known as a maximum entropy
classifier, involves fitting the weights of each feature value for a particularclass
to the available training data. A good fit of the weights to the data is obtained by
selecting weights to maximize thelog-likelihoodof the learned classification
model. The log-likelihood is a way of expressing the values of weights based
on the values of the target class.

Usually, logistic regression used in a multi-class setting consists of several
classifiers each of which is trained to tell one class apart from another (pairwise
classification). In classifying an instance, the instance is assigned the class that
receives the most votes by the sub-classifiers.

The logistic regression approach used in part III of the present thesisis
calledLogistic, ormultinomial logistic regression(le Cessie and van Houwelin-
gen 1992).

3.3 Evaluating performance

Once a classifier has been learned, how is its performance to be evaluated?
For a number of reasons, it is not common practice to evaluate a classifier on
the same data that was used for training. Instead, the training and testing data
should be kept separate in order to, for example, avoid overfitting the classifier.
Among other things, overfitting may cause overly optimistic performance fig-
ures that most probably do not reflect the true behaviour of the classifier when
it is facing previously unseen data. At the same time, it is desirable to use as
much of the available data as possible in training; there is clearly a trade-off
between the amount of data used for training, and the amount used for evaluat-
ing the learned classifier. One way to strike a balance is to divide the available
data inton parts equal in size, train on parts 1, . . . ,(n− 1), and evaluate the
result on the remaining part. The procedure is then repeated for as many parts
there are. This approach is calledn-fold cross-validation. Usuallyn is set to
10, and the evaluation is then called 10-fold cross-validation.

The way to evaluate the coverage performance of a classifier depends on
the task at hand. Throughout the thesis, four metrics are used: accuracy, preci-
sion, recall, and F-score. Precision, recall and F-score are commonlyused in
information retrieval and information extraction. The performance metrics can
be defined in terms of the number oftrue positives(TP), true negatives(TN),
false positives(FP), andfalse negatives(FN) returned by a classifier when clas-
sifying a set of instances. A true positive is an instance correctly classified as
belonging to a given class. Conversely, a true negative is an instance correctly
classified as not belonging to a given class. A false positive is an instanceer-
roneously classified as belonging to a given class, while a false negativeis an
instance erroneously classified as not belonging to a class.
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• The accuracy is simply the amount of correctly classified instances, usu-
ally given as a percentage:

Accuracy=
TP+TN

TP+TN+FP+FN
(1)

• Precision,P, is defined as the ratio between the number of correctly
classified instances and the number of classified instances:

P =
TP

TP+FP
(2)

• Recall,R, is defined as the ratio between the number of correctly classi-
fied instances and the total number of instances:

R=
TP

TP+FN
(3)

• The F-score is the harmonic mean ofprecisionandrecall such that

F =
(β 2 +1)×P×R

β 2×P+R
(4)

whereβ is a constant used for determining the influence of precision
over recall, or vice-versa. In the remainder of the thesisβ is set to 1,
which is commonly referred to asF1 or Fβ=1.

Precision, recall, and F-score assume values in the interval of 0 to 1, where
higher values are better. Values are commonly reported in percentages, for
instance, an F-score of 0.85 is often written as 85%.





4 ACTIVE MACHINE LEARNING

Active machine learning is a supervised learning method in which the learner is
in control of the data from which it learns. That control is used by the learner
to ask an oracle, a teacher, typically a human with extensive knowledge of
the domain at hand, about the classes of the instances for which the model
learned so far makes unreliable predictions. The active learning process takes
as input a set of labeled examples, as well as a larger set of unlabeled examples,
and produces a classifier and a relatively small set of newly labeled data.The
overall goal is to produce as good a classifier as possible, without havingto
mark-up and supply the learner with more data than necessary. The learning
process aims at keeping the human annotation effort to a minimum, only asking
for advice where the training utility of the result of such a query is high.

On those occasions where it is necessary to distinguish between “ordinary”
machine learning and active learning, the former is sometimes referred to as
passive learningor learning byrandom samplingfrom the available set of
labeled training data.

A prototypical active learning algorithm is outlined in figure 4.1. Active
learning has been successfully applied to a number of language technology
tasks, such as

• information extraction (Scheffer, Decomain and Wrobel 2001; Finn and
Kushmerick 2003; Jones et al. 2003; Culotta et al. 2006);

• named entity recognition (Shen et al. 2004; Hachey, Alex and Becker
2005; Becker et al. 2005; Vlachos 2006; Kim et al. 2006);

• text categorization (Lewis and Gale 1994; Lewis 1995; Liere and Tade-
palli 1997; McCallum and Nigam 1998; Nigam and Ghani 2000; Scho-
hn and Cohn 2000; Tong and Koller 2002; Hoi, Jin and Lyu 2006);

• part-of-speech tagging (Dagan and Engelson 1995; Argamon-Engelson
and Dagan 1999; Ringger et al. 2007);
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• parsing (Thompson, Califf and Mooney 1999; Hwa 2000; Tang, Luo
and Roukos 2002; Steedman et al. 2003; Hwa et al. 2003; Osborne and
Baldridge 2004; Becker and Osborne 2005; Reichart and Rappoport
2007);

• word sense disambiguation (Chen et al. 2006; Chan and Ng 2007; Zhu
and Hovy 2007; Zhu, Wang and Hovy 2008a);

• spoken language understanding (Tur, Hakkani-Tür and Schapire 2005;
Wu et al. 2006);

• phone sequence recognition (Douglas 2003);

• automatic transliteration (Kuo, Li and Yang 2006); and

• sequence segmentation (Sassano 2002).

One of the first attempts to make expert knowledge an integral part of learning
is that of query construction (Angluin 1988). Angluin introduces a rangeof
queries that the learner is allowed to ask the teacher, such as queries regarding
membership(“Is this concept an example of the target concept?”),equivalence
(“Is X equivalent to Y?”), anddisjointness(“Are X and Y disjoint?”). Besides a
simpleyesorno, the full answer from the teacher can contain counterexamples,
except in the case of membership queries. The learner constructs queries by
altering the attribute values of instances in such a way that the answer to the
query is as informative as possible. Adopting this generative approach toactive
learning leads to problems in domains where changing the values of attributes
are not guaranteed to make sense to the human expert; consider the exampleof
text categorization using a bag-of-word approach. If the learner first replaces
some of the words in the representation, and then asks the teacher whetherthe
new artificially created document is a member of a certain class, it is not likely
that the new document makes sense to the teacher.

In contrast to the theoretically interesting generative approach to active
learning, current practices are based on example-driven means to incorpo-
rate the teacher into the learning process; the instances that the learner asks
(queries) the teacher to classify all stem from existing, unlabeled data. These-
lective samplingmethod introduced by Cohn, Atlas and Ladner (1994) builds
on the concept of membership queries, albeit from an example-driven perspec-
tive; the learner queries the teacher about the data at hand for which it isun-
certain, that is, for which it believes misclassifications are possible.
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1. Initialize the process by applying base learnerB to labeled training data setDL

to obtain classifierC.

2. ApplyC to unlabeled data setDU to obtainDU
′.

3. FromDU
′, select the most informativen instances to learn from,I .

4. Ask the teacher for classifications of the instances inI .

5. MoveI , with supplied classifications, fromDU
′ to DL.

6. Re-train usingB onDL to obtain a new classifier,C′.

7. Repeat steps 2 through 6, untilDU is empty or until some stopping criterion is
met.

8. Output a classifier that is trained onDL.

Figure 4.1: A prototypical active learning algorithm.

4.1 Query by uncertainty

Building on the ideas introduced by Cohn and colleagues concerning selective
sampling (Cohn, Atlas and Ladner 1994), in particular the way the learner se-
lects what instances to ask the teacher about,query by uncertainty(uncertainty
sampling, uncertainty reduction) queries the learning instances for which the
current hypothesis is least confident. In query by uncertainty, a singleclassifier
is learned from labeled data and subsequently utilized for examining the unla-
beled data. Those instances in the unlabeled data set that the classifier is least
certain about are subject to classification by a human annotator. The use of
confidence scores pertains to the third step in figure 4.1. This straightforward
method requires the base learner to provide a score indicating how confident it
is in each prediction it performs.

Query by uncertainty has been realized using a range of base learners, such
as logistic regression (Lewis and Gale 1994), Support Vector Machines(Scho-
hn and Cohn 2000), and Markov Models (Scheffer, Decomain and Wrobel
2001). They all report results indicating that the amount of data that require
annotation in order to reach a given performance, compared to passively learn-
ing from examples provided in a random order, is heavily reduced using query
by uncertainty.

Becker and Osborne (2005) report on a two-stage model for activelylearn-
ing statistical grammars. They use uncertainty sampling for selecting the sen-
tences for which the parser provides the lowest confidence scores. The problem
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1. Initialize the process by applyingEnsembleGenerationMethodusing base
learnerB on labeled training data setDL to obtain a committee of classifiers
C.

2. Have each classifier inC predict a label for every instance in the unlabeled data
setDU , obtaining labeled setDU

′.

3. FromDU
′, select the most informativen instances to learn from, obtainingDU

′′.

4. Ask the teacher for classifications of the instancesI in DU
′′.

5. MoveI , with supplied classifications, fromDU
′′ to DL.

6. Re-train usingEnsembleGenerationMethodand base learnerB onDL to obtain
a new committee,C.

7. Repeat steps 2 through 6 untilDU is empty or some stopping criterion is met.

8. Output a classifier learned usingEnsembleGenerationMethodand base learner
B onDL.

Figure 4.2: A prototypical query by committee algorithm.

with this approach, they claim, is that the confidence score says nothing about
the state of the statistical model itself; if the estimate of the parser’s confidence
in a certain parse tree is based on rarely occurring information in the under-
lying data, the confidence in the confidence score is low, and should thus be
avoided. The first stage in Becker and Osborne’s two-stage method aims at
identifying and singling out those instances (sentences) for which the parser
cannot provide reliable confidence measures. In the second stage, query by
uncertainty is applied to the remaining set of instances. Becker and Osborne
(2005) report that their method performs better than the original form of uncer-
tainty sampling, and that it exhibits results competitive with a standard query
by committee method.

4.2 Query by committee

Query by committee, like query by uncertainty, is a selective sampling method,
the fundamental difference between the two being that query by committee is
a multi-classifier approach. In the original conception of query by committee,
several hypotheses are randomly sampled from the version space (Seung, Op-
per and Sompolinsky 1992). The committee thus obtained is used to examine
the set of unlabeled data, and the disagreement between the hypotheses with re-
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spect to the class of a given instance is utilized to decide whether that instance
is to be classified by the human annotator. The idea with using a decision com-
mittee relies on the assumption that in order for approaches combining several
classifiers to work, the ensemble needs to be made up from diverse classifiers.
If all classifiers are identical, there will be no disagreement between them as
to how a given instance should be classified, and the whole idea of voting (or
averaging) is invalidated. Query by committee, in the original sense, is possi-
ble only with base learners for which it is feasible to access and sample from
the version space; learners reported to work in such a setting include Winnow
(Liere and Tadepalli 1997), and perceptrons (Freund et al. 1997).A prototypi-
cal query by committee algorithm is shown in figure 4.2.

4.2.1 Query by bagging and boosting

Abe and Mamitsuka (1998) introduce an alternative way of generating multiple
hypotheses; they build onbaggingand boostingto generate committees of
classifiers from the same underlying data set.

Bagging, short for bootstrap aggregating (Breiman 1996), is a technique
exploiting the bias-variance decomposition of classification errors (see, for in-
stance, Domingos 2000 for an overview of the decomposition problem). Bag-
ging aims at minimizing the variance part of the error by randomly sampling –
with replacement – from the data set, thus creating several data sets from the
original one. The same base learner is then applied to each data set in order
to create a committee of classifiers. In the case of classification, an instance is
assigned the label that the majority of the classifiers predicted (majority vote).
In the case of regression, the value assigned to an instance is the average of the
predictions made by the classifiers.

Like bagging, boosting (Freund and Schapire 1997) is a way of combining
classifiers obtained from the same base learner. Instead of building classifiers
independently, boosting allows for classifiers to influence each other during
training. Boosting is based on the assumption that several classifiers learned
using a weak4 base learner, over a varying distribution of the target classes in
the training data, can be combined into one strong classifier. The basic idea is
to let classifiers concentrate on the cases in which previously built classifiers
failed to correctly classify data. Furthermore, in classifying data, boostingas-
signs weights to the classifiers according to their performance; the better the
performance, the higher valued is the classifier’s contribution in voting (orav-
eraging). Schapire (2003) provides an overview of boosting.

4A learner isweakif it produces a classifier that is only slightly better than random guessing,
while a learner is said to bestrongif it produces a classifier that achieves a low error with high
confidence for a given concept (Schapire 1990).



30 Active machine learning

Abe and Mamitsuka (1998) claim that query by committee, query by bag-
ging, and query by boosting form a natural progression; in query by committee,
the variance in performance among the hypotheses is due to the randomness
exhibited by the base learner. In query by bagging, the variance is a result of the
randomization introduced when sampling from the data set. Finally, the vari-
ance in query by boosting is a result of altering the sampling according to the
weighting of the votes given by the hypotheses involved. A generalized vari-
ant of query by bagging is obtained if theEnsembleGenerationMethodin fig-
ure 4.2 is substituted with bagging. Essentially, query by bagging applies bag-
ging in order to generate a set of hypotheses that is then used to decide whether
it is worth querying the teacher for classification of a given unlabeled instance.
Query by boosting proceeds similarly to query by bagging, with boosting ap-
plied to the labeled data set in order to generate a committee of classifiers
instead of bagging, that is, boosting is used asEnsembleGenerationMethodin
figure 4.2.

Abe and Mamitsuka (1998) report results from experiments using the deci-
sion tree learner C4.5 as base learner and eight data sets from the UCI Machine
Learning Repository, the latest release of which is described in (Asuncion and
Newman 2007). They find that query by bagging and query by boosting sig-
nificantly outperformed a single C4.5 decision tree, as well as boosting using
C4.5.

4.2.2 ActiveDecorate

Melville and Mooney (2004) introduce ActiveDecorate, an extension to the
Decorate method (Melville and Mooney 2003) for constructing diverse com-
mittees by enhancing available data with artificially generated training exam-
ples. Decorate – short forDiverse Ensemble Creation by Oppositional Rela-
beling of Artificial Training Examples– is an iterative method generating one
classifier at a time. In each iteration, artificial training data is generated in such
a way that the labels of the data are maximally different from the predictions
made by the current committee of classifiers. A strong base learner is then
used to train a classifier on the union of the artificial data set and the available
labeled set. If the resulting classifier increases the prediction error on thetrain-
ing set, it is rejected as a member of the committee, and added otherwise. In
ActiveDecorate, the Decorate method is utilized for generating the committee
of classifiers, which is then used to decide which instances from the unlabeled
data set are up for annotation by the human oracle. In terms of the prototyp-
ical query by committee algorithm in figure 4.2, ActiveDecorate is used as
EnsembleGenerationMethod.
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Melville and Mooney (2004) carry out experiments on 15 data sets from the
UCI repository (Asuncion and Newman 2007). They show that their algorithm
outperforms query by bagging and query by boosting as introduced by Abe
and Mamitsuka (1998) both in terms of accuracy reached, and in terms of the
amount of data needed to reach top accuracy. Melville and Mooney conclude
that the superiority of ActiveDecorate is due to the diversity of the generated
ensembles.

4.3 Active learning with redundant views

Roughly speaking, utilizing redundant views is similar to the query by com-
mittee approach described above. The essential difference is that instead of
randomly sampling the version space, or otherwise tamper with the existing
training data with the purpose of extending it to obtain a committee, using re-
dundant views involves splitting the feature set into several sub-sets orviews,
each of which is enough, to some extent, to describe the underlying problem.

Blum and Mitchell (1998) introduce a semi-supervised bootstrapping tech-
nique calledCo-training in which two classifiers are trained on the same data,
but utilizing different views of it. The example of views provided by Blum and
Mitchell (1998) is from the task of categorizing texts on the web. One way of
learning how to do that is by looking at the links to the target document from
other documents on the web, another way is to consider the contents of the
target document alone. These two ways correspond to two separate views of
learning the same target concept.

As in active learning, Co-training starts off with a small set of labeled data,
and a large set of unlabeled data. The classifiers are first trained on thela-
beled part, and subsequently used to tag an unlabeled set. The idea is then that
during the learning process, the predictions made by the first classifier onthe
unlabeled data set, and for which it has the highest confidence, are added to
the training set of the second classifier, and vice-versa. The classifiers are then
retrained on the newly extended training set, and the bootstrapping process
continues with the remainder of the unlabeled data.

A drawback with the Co-training method as it is originally described by
Blum and Mitchell (1998) is that it requires the views of data to be condition-
ally independent and compatible given the class, that is, each view should be
enough for producing a strong learner compatible with the target concept.In
practice, however, finding such a split of features may be hard; the problem is
further discussed in section 4.3.1.

Co-trainingper seis not within the active learning paradigm since it does
not involve a teacher, but the work by Blum and Mitchell (1998) forms the ba-
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1. Initialize the process by applying base learnerB using eachv in viewsV to
labeled training setDL to obtain a committee of classifiersC.

2. Have each classifier inC predict a label for every instance in the unlabeled data
setDU , obtaining labeled setDU

′.

3. FromDU
′, select those instances for which the classifiers inC predicted differ-

ent labels to obtain thecontention set5DU
′′.

4. Select instancesI from DU
′′ and ask the teacher for their labels.

5. Move instancesI , with supplied classifications, fromDU
′′ to DL.

6. Re-train by applying base learnerB using eachv in viewsV to DL to obtain
committeC′.

7. Repeat steps 2 through 6 untilDU is empty or some stopping criterion is met.

8. Output the final classifier learned by combining base learnerB, views inV, and
dataDL.

Figure 4.3: A prototypical multiple view active learning algorithm.

sis for other approaches. One such approach is that ofCorrected Co-training
(Pierce and Cardie 2001). Corrected Co-training is a way of remedying the
degradation in performance that can occur when applying Co-training to large
data sets. The concerns of Pierce and Cardie (2001) include that of scalability
of the original Co-training method. Pierce and Cardie investigate the task of
noun phrase chunking, and they find that when hundreds of thousandsof ex-
amples instead of hundreds, are needed to learn a target concept, the successive
degradation of the quality of the bootstrapped data set becomes an issue. When
increasing the amount of unlabeled data, and thus also increasing the number
of iterations during which Co-training will be in effect, the risk of errors in-
troduced by the classifiers into each view increases. In Corrected Co-training
a human annotator reviews and edits, as found appropriate, the data produced
by both view classifiers in each iteration, prior to adding the data to the pool
of labeled training data. This way, Pierce and Cardie point out, the quality of
the labeled data is maintained with only a moderate effort needed on behalf
of the human annotator. Figure 4.3 shows a prototypical algorithm for multi-
view active learning. It is easy to see how Corrected Co-training fits into it;
if, instead of having the classifiers select the instances on which they disagree
(step 3 in figure 4.3), each classifier selects the instances for which it makes
highly confident predictions, and have the teacher correct them in step 4, the
algorithm in figure 4.3 would describe Corrected Co-training.

5The instance or set of instances for which the view classifiers disagree iscalled thecon-
tention point, andcontention set, respectively.
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Hwa et al. (2003) adopt a Corrected Co-training approach to statistical pars-
ing. In pursuing their goal – to further decrease the amount of corrections of
parse trees a human annotator has to perform – they introducesingle-sided
corrected Co-training. Single-sided Corrected Co-training is like Corrected
Co-training, with the difference that the annotator only reviews the data, parse
trees, produced by one of the view classifiers. Hwa et al. (2003) conclude that
in terms of parsing performance, parsers trained using some form of sample
selection technique are better off than parsers trained in a pure Co-training set-
ting, given the cost of human annotation. Furthermore, Hwa and colleagues
point out that even though parsing performance achieved using single-sided
Corrected Co-training is not as good as that resulting from Corrected Co-
training, some corrections are better than none.

In their work, Pierce and Cardie (2001) note that corrected Co-trainingdoes
not help their noun phrase chunker to reach the expected performance. Their
hypothesis as to why the performance gap occurs, is that Co-training does not
lend itself to finding the most informative examples available in the unlabeled
data set. Since each classifier selects the examples it is most confident in, the
examples are likely to represent aspects of the task at hand already familiarto
the classifiers, rather than representing potentially new and more informative
ones. Thus, where Co-training promotes confidence in the selected examples
over finding examples that would help incorporating new information about
the task, active learning works the other way around. A method closely re-
lated to Co-training, but which is more exploratory by nature, isCo-testing
(Muslea, Minton and Knoblock 2000, 2006). Co-testing is an iterative process
that works under the same premises as active learning in general, that is, it
has access to a small set of labeled data, as well as a large set of unlabeled
data. Co-testing proceeds by first learning a hypothesis using each viewof the
data, then asking a human annotator to label the unlabeled instances for which
the view classifiers’ predictions disagree on labels. Such instances are called
thecontention setor contention point. The newly annotated instances are then
added to the set of labeled training data.

Muslea, Minton and Knoblock (2006) introduce a number of variants of
Co-testing. The variations are due to choices of how to select the instancesto
query the human annotator about, as well as how the final hypothesis is to be
created. The former choice pertains to step 4 in figure 4.3, and the options are:

Näıve– Randomly choose an example from the contention set. This strategy
is suitable when using a base learner that does not provide confidence
estimates for the predictions it makes.
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Aggressive– Choose to query the example in the contention set for which
the least confident classifier makes the most confident prediction. This
strategy is suitable for situations where there is (almost) no noise.

Conservative– Choose to query the example in the contention set for which
the classifiers makes predictions that are as close as possible. This strat-
egy is suitable for noisy domains.

Muslea, Minton and Knoblock (2006) also present three ways of formingthe
final hypothesis in Co-testing, that is, the classifier to output at the end of the
process. These ways concern step 8 in figure 4.3:

Weighted vote– Combine the votes of all view classifiers, weighted according
to each classifier’s confidence estimate of its own prediction.

Majority vote – Combine the votes of all view classifiers so that the label
predicted by the majority of the classifiers is used.

Winner-takes-all– The final classifier is the one learned in the view that made
the least amount of mistakes throughout the learning process.

Previously described multi-view approaches to learning all relied on the views
beingstrong. Analogously to the notion of a strong learner in ensemble-based
methods, a strong view is a view which provides enough information about
the data for a learner to learn a given target concept. Conversely, there are
weakviews, that is, views that are not by themselves enough to learn a given
target concept, but rather a concept more general or more specific than the
concept of interest. In the light of weak views, Muslea, Minton and Knoblock
(2006) redefine the notion of contention point, or contention set, to be the set
of examples, from the unlabeled data, for which the strong view classifiers
disagree. Muslea and colleagues introduce two ways of making use of weak
views in Co-testing. The first is as tie-breakers when two strong views predict
a different label for an unlabeled instance, and the second is by using aweak
view in conjunction with two strong views in such a way that the weak view
would indicate a mistake made by both strong views. The latter is done by
detecting the set of contention points for which the weak view disagrees with
both strong views. Then the next example to ask the human annotator to label,
is the one for which the weak view makes the most confident prediction. This
example is likely to represent a mistake made by both strong views, Muslea,
Minton and Knoblock (2006) claim, and leads to faster convergence of the
classifiers learned.

The experimental set-up in used by Muslea, Minton and Knoblock (2006) is
targeted at testing whether Co-testing converges faster than the corresponding
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single-view active learning methods when applied to problems in which there
exist several views. The tasks are of two types: classification, includingtext
classification, advertisement removal, and discourse tree parsing; and wrap-
per induction. For all tasks in their empirical validation, Muslea, Minton and
Knoblock (2006) show that the Co-testing variants employed outperform the
single-view, state-of-the art approaches to active learning that were also part
of the investigation.

The advantages of using Co-testing include its ability to use any base learner
suitable for the particular problem at hand. This seems to be a rather unique
feature among the active learning methods reviewed in this chapter. Neverthe-
less, there are a couple of concerns regarding the shortcomings of Co-testing
aired by Muslea and colleagues that need to be mentioned. Both concerns re-
late to the use of multiple views. The first is that Co-testing can obviously only
be applied to tasks where there exist two views. The other of their concerns is
that the views of data have to be uncorrelated (independent) and compatible,
that is, the same assumption brought up by Blum and Mitchell (1998) in their
original work on Co-training. If the views are correlated, the classifier learned
in each view may turn out so similar that no contention set is generated when
both view classifiers are run on the unlabeled data. In this case, there is no
way of selecting an example for which to query the human annotator. If the
views are incompatible, the view classifiers will learn two different tasks and
the process will not converge.

Just as with committee-based methods, utilizing multiple views seems like
a viable way to make the most of a situation that is caused by having access
to a small amount of labeled data. Though, the question remains of how one
should proceed in order to define multiple views in a way so that the they are
uncorrelated and compatible with the target concept.

4.3.1 How to split a feature set

Acquiring a feature set split adhering to the assumptions underlying the multi-
view learning paradigm is a non-trivial task requiring knowledge about the
learning situation, the data, and the domain. Two approaches to the view de-
tection and validation problem form the extreme ends of a scale; randomly
splitting a given feature set and hope for the best at one end, and adopting a
very cautions view on the matter by computing the correlation and compatibil-
ity for every combination of the features in a given set at the other end.

Nigam and Ghani (2000) report on randomly splitting the feature set for
tasks where there exists no natural division of the features into separateviews.
The task is text categorization, using Naı̈ve Bayes as base learner. Nigam and
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Ghani argue that, if the features are sufficiently redundant, and one can iden-
tify a reasonable division of the feature set, the application of Co-training using
such a non-natural feature set split should exhibit the same advantagesas ap-
plying Co-training to a task in which there exists natural views.

Concerning the ability to learn a desired target concept in each view, Collins
and Singer (1999) introduce a Co-training algorithm that utilizes a boosting-
like step to optimize the compatibility between the views. The algorithm, called
CoBoost, favors hypotheses that predict the same label for most of the unla-
beled examples.

Muslea, Minton and Knoblock (2002a) suggest a method for validating the
compatibility of views, that is, given two views, the method should provide an
answer to whether each view is enough to learn the target concept. The way
Muslea and colleagues go about is by collecting information about a number
of tasks solved using the same views as the ones under investigation. Given
this information, a classifier for discriminating between the tasks in which the
views were compatible, and the tasks in which they were not, is trained and ap-
plied. The obvious drawback of this approach is that the first time the question
of whether a set of views is compatible with a desired concept, the method
by Muslea, Minton and Knoblock (2002a) is not applicable. In all fairness,
it should be noted that the authors clearly state the proposed view validation
method to be but one step towards automatic view detection.

Muslea, Minton and Knoblock (2002b) investigate view dependence and
compatibility for several semi-supervised algorithms along with one algorithm
combining semi-supervised and active learning (Co-testing), CoEMT. Thecon-
clusions made by Muslea and colleagues are interesting, albeit perhaps not
surprising. For instance, the performance of all multi-view algorithms under
investigation degrades as the views used become less compatible, that is, when
the target concept learned by view classifiers are not the same in each view. A
second, very important point made in (Muslea, Minton and Knoblock 2002a)
is that the robustness of the active learning algorithm with respect to view cor-
relation is suggested to be due to the usage of an active learning component;
being able to ask a teacher for advice seems to compensate for the views not
being entirely uncorrelated.

Balcan, Blum and Yang (2005) argue that, for the kind of Co-training pre-
sented by Blum and Mitchell (1998), the original assumption of conditional in-
dependence between views is overly strong. Balcan and colleagues claimthat
the views do not have to denote conditionally independent ways of represent-
ing the task to be useful to Co-training, if the base learner is able to correctly
learn the target concept using positive training examples only.

Zhang et al. (2005) present an algorithm calledCorrelation and Compat-
ibility based Feature Partitioner, CCFPfor computing, from a given set of
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features, independent and compatible views. CCFP makes use of featurepair-
wise symmetric uncertainty and feature-wise information gain to detect the
views. Zhang and colleagues point out that in order to employ CCFP, a fairly
large number of labeled examples are needed. Exactly how large a number is
required is undisclosed. CCFP is empirically tested and Zhang et al. (2005)
report on somewhat satisfactory results.

Finally, one way of circumventing the assumptions of view independence
and compatibility is simply not to employ different views at all. Goldman and
Zhou (2000) propose a variant of Co-training which assumes no redundant
views of the data; instead, a single view is used by differently biased base
learners. Chawla and Karakoulas (2005) make empirical studies on this ver-
sion of Co-training. Since the methods of interest to the present thesis are
those containing elements of active learning, which the original Co-training
approach does not, the single-view multiple-learner approach to Co-training
will not be further elaborated.

In the literature, there is to my knowledge no report on automatic means
to discover, from a given set of features, views that satisfy the original Co-
training assumptions concerning independence and compatibility. Although
the Co-training method as such is not of primary interest to this thesis, off-
springs of the method are. The main approach to active multi-view learning,
Co-testing and its variants rely on the same assumptions as does Co-training.
Muslea, Minton and Knoblock (2002b) show that violating the compatibility
assumption in the context of an active learning component, does not necessar-
ily lead to failure; the active learner might have a stabilizing effect on the diver-
gence of the target concept learned in each view. As regards the conditional in-
dependence assumption made by Blum and Mitchell (1998), subsequent work
(Balcan, Blum and Yang 2005) shows that the independence assumption istoo
strong, and that iterative Co-training, and thus also Co-testing, works under
a less rigid assumption concerning the expansion of the data in the learning
process.

4.4 Quantifying disagreement

So far, the issue of disagreement has been mentioned but deliberately notelab-
orated on. The algorithms for query by committee and its variants (figure 4.2)
as well as those utilizing multiple views of data (figure 4.3) all contain steps
in which the disagreement between classifiers concerning instances has tobe
quantified. In a two-class case, such quantification is simply the difference
between the positive and negative votes given by the classifiers. Typically,
instances for which the distribution of votes is homogeneous is selected for
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querying. Generalizing disagreement to a multi-class case is not trivial. Körner
and Wrobel (2006) empirically test four approaches to measuring disagree-
ment between members of a committee of classifiers in a multi-class setting.
The active learning approaches they consider are query by bagging,query by
boosting, ActiveDecorate, and Co-testing. The disagreement measuresinves-
tigated aremargin-based disagreement, uncertainty sampling-based disagree-
ment, entropy-based disagreement, and finally a measure of their own dubbed
specific disagreement. Körner and Wrobel (2006) strongly advocate the use
of margin-based disagreement as a standard approach to quantifying disagree-
ment in an ensemble-based setting.

Sections 4.4.1 through 4.4.4 deal with the different measures used by Körner
and Wrobel (2006), followed by the treatment of the commonly usedKullback-
Leibler divergence, Jensen-Shannon divergence, vote entropy, andF-comple-
mentin sections 4.4.5 to 4.4.8.

4.4.1 Margin-based disagreement

Margin, as introduced by Abe and Mamitsuka (1998) for binary classification
in query by boosting, is defined as the difference between the number of votes
given to the two labels. Abe and Mamitsuka base their notion of margins on
the finding that a classifier exhibiting a large margin when trained on labeled
data, performs better on unseen data than does a classifier that has a smaller
margin on the training data (Schapire et al. 1998). Melville and Mooney (2004)
extend Abe and Mamitsuka’s definition of margin to include class probabilities
given by the individual committee members. Körner and Wrobel (2006), in
turn, generalize Melville and Mooney’s definition of margin to account for the
multi-class setting as well. The margin-based disagreement for a given instance
is the difference between the first and second highest probabilities with which
an ensemble of classifiers assigns different class labels to the instance.

For example, if an instanceX is classified by committee member 1 as be-
longing to classA with a probability of 0.7, by member 2 as belonging class
B with a probability of 0.2, and by member 3 to classC with 0.3, then the
margin forX is A−C = 0.4. If instanceY is classified by member 1 as class
A with a probability of 0.8, by member 2 as classB with a probability of 0.9,
and by member 3 as classC with 0.6, then the margin forY is B−A = 0.1.
A low value on the margin indicates that the ensemble disagree regarding the
classification of the instance, while a high value signals agreement. Thus, in
the above example, instanceY is more informative than instanceX.
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4.4.2 Uncertainty sampling-based disagreement

Originally, uncertainty sampling is a method used in conjunction with single
classifiers, rather than ensembles of classifiers (see section 4.1). Körner and
Wrobel (2006), though, prefer to view it as another way of generalizing the
binary margin approach introduced in the previous section. In uncertaintysam-
pling, instances are preferred that receives the lowestclass probabilityestimate
by the ensemble of classifiers. The class probability is the highest probability
with which an instance is assigned a class label.

4.4.3 Entropy-based disagreement

The entropy-based disagreement used in (Körner and Wrobel 2006) is what
they refer to as the ordinary entropy measure (information entropyor Shannon
entropy) first introduced by Shannon (1948). The entropyH of a random vari-
ableX is defined in equation 5 in the case of ac class problem, that is, where
X can take on valuesx1, . . . ,xc.

H(X) = −
c

∑
i=1

p(xi)log2p(xi) (5)

wherep(xi) denotes the probability ofxi . A lower value onH(X) indicates less
confusion or less uncertainty concerning the outcome of the value ofX.

4.4.4 The K̈orner-Wrobel disagreement measure

Thespecific disagreementmeasure, here referred to as theKörner-Wrobel dis-
agreement measureis a combination of margin-based disagreementM and the
maximal class probabilityP over classesC in order to indicate disagreement
on a narrow subset of class values. The Körner-Wrobel disagreement measure,
R, is defined in equation 6.

R= M +0.5
1

(|C|P)3 (6)

Körner and Wrobel (2006) find that the success of the specific disagreement
measure is closely related to which active learning method is used. Through-
out the experiments conducted by Körner and Wrobel, those configurations
utilizing specific disagreement as selection metric perform less well than the
margin-based and entropy-based disagreement measures investigated.
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4.4.5 Kullback-Leibler divergence

The Kullback-Leibler divergence (KL-divergence, information divergence) is a
non-negative measure of the divergence between two probability distributions
p andq in the same event spaceX = {x1, . . . ,xc}. The KL-divergence, denoted
D(· ‖ ·), between two probability distributionsp andq is defined in equation 7.

D(p ‖ q) =
c

∑
i=1

p(xi)log
p(xi)

q(xi)
(7)

A high value on the KL-divergence indicates a large difference betweenthe
distributionsp and q. A zero-valued KL-divergence signals full agreement,
that isp andq are equivalent.

Kullback-Leibler divergence to the mean(Pereira, Tishby and Lee 1993)
quantifies the disagreement between committee members; it is the average KL-
divergence between each distribution and the mean of all distributions. KL-
divergence to the mean,Dmeanfor an instancex is defined in equation 8.

Dmean(x) =
1
k

k

∑
i=1

D(pi(x) ‖ pmean(x)) (8)

wherek is the number of classifiers involved,pi(x) is the probability distribu-
tion for x given by thei-th classifier,pmean(x) is the mean probability distri-
bution of allk classifiers forx, andD(· ‖ ·) is the KL-divergence as defined in
equation 7.

KL-divergence, as well as KL-divergence to the mean, has been used for
detecting and measuring disagreement in active learning, see for instance(Mc-
Callum and Nigam 1998; Becker et al. 2005; Becker and Osborne 2005)

4.4.6 Jensen-Shannon divergence

The Jensen-Shannon divergence, (JSD) is a symmetrized and smoothed ver-
sion of KL-divergence, which essentially means that it can be used to measure
the distance between two probability distributions (Lin 1991). The Jensen-
Shannon divergence for two distributionsp andq is defined in equation 9.

JSD(p,q) = H(w1p+w2q)−w1H(p)−w2H(q) (9)

wherew1 and w2 are the weights of the probability distributions such that
w1,w2 ≥ 0 andw1 +w2 = 1, andH is the Shannon entropy as defined in equa-
tion 5.
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Lin (1991) defines the Jensen-Shannon divergence fork distributions as in
equation 10.

JSD(p1, . . . , pk) = H(
k

∑
i=1

wi pi)−
k

∑
i=1

wiH(pi) (10)

wherepi is the class probability distribution given by thei-th classifier for a
given instance,wi is the vote weight of thei-th classifier among thek classifiers
in the set, andH(p) is the entropy as defined in equation 5. A Jensen-Shannon
divergence value of zero signals complete agreement among the classifiers in
the committee, while correspondingly, increasingly larger JSD values indicate
larger disagreement.

4.4.7 Vote entropy

Engelson and Dagan (1996) usevote entropyfor quantifying the disagreement
within a committee of classifiers used for active learning in a part-of-speech
tagging task. DisagreementVE for an instancee based on vote entropy is de-
fined as in equation 11.

VE(e) = −
1

log k

|l |

∑
i=0

V(l i ,e)
k

log
V(l i ,e)

k
(11)

wherek is the number of members in the committee, andV(l i ,e) is the num-
ber of members assigning labell i to instancee. Vote entropy is computed per
tagged unit, for instance per token. In tasks where the smallest tagged unitis
but a part of the construction under consideration, for instance in phrase chunk-
ing where each phrase may contain one or more tokens, the vote entropy ofthe
larger unit is computed as the mean of the vote entropy of its parts (Ngai and
Yarowsky 2000; Tomanek, Wermter and Hahn 2007a).

4.4.8 F-complement

Ngai and Yarowsky (2000) compare the vote entropy measure, as introduced
by Engelson and Dagan, with their own measure calledF-complement(F-score
complement). DisagreementFC concerning the classification of datae among
a committee based on the F-complement is defined as in equation 12.

FC(e) =
1
2 ∑

ki ,k j∈K

(1−Fβ=1(ki(e),k j(e))) (12)
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whereK is the committee of classifiers,ki and k j are members ofK, and
Fβ=1(ki(e),k j(e)) is the F-score,Fβ=1 (defined in equation 4), of the classi-
fier ki ’s labelling of the datae relative to the evaluation ofk j one.

In calculating the F-complement, the output of one of the classifiers in the
committee is used as the answer key, against which all other committee mem-
bers’ results are compared and measured (in terms of F-score).

Ngai and Yarowsky (2000) find that the task they are interested in, base
noun phrase chunking, using F-complement to select instances to annotateper-
forms slightly better than using vote entropy. Hachey, Alex and Becker (2005)
use F-complement to select sentences for named entity annotation; they point
out that the F-complement is equivalent to the inter-annotator agreement be-
tween|K| classifiers.

4.5 Selecting the seed set

The initial set of labeled data used in active learning should be representative
with respect to the classes that the learning process is to handle. Omitting a
class from the initial seed set might result in trouble further down the road
when the learner fits the classes it knows of with the unlabeled data it sees. In-
stances that would have been informative to the learner can go unnoticed sim-
ply because the learner, when selecting informative instances, treat instances
from several classes as if they belong to one and the same class.

A related issue is that of instance distribution. Given that the learner is fed
a seed set of data in which all classes are represented, the number of examples
of each class plays a crucial role in whether the learner is able to properlylearn
how to distinguish between the classes. Should the distribution of instances in
the seed set mirror the (expected) distribution of instances in the unlabeled set?

In the context of text categorization, McCallum and Nigam (1998) report
on a method that allows for starting the active learning process without any
labeled examples at all. They select instances (documents) from the regionof
the pool of unlabeled data that has the highest density. A dense region is one
in which the distance (based on Kullback-Leibler divergence, defined inequa-
tion 7) between documents is small. McCallum and Nigam (1998) combine
expectation-maximization (Dempster, Laird and Rubin 1977) and active learn-
ing in a pool-based setting (section 4.6); their results show that the learning in
this particular setting might in fact benefit from being initiated without the use
of a labeled seed set of documents.

Tomanek, Wermter and Hahn (2007b) describe a three-step approach to
compiling a seed set for the task of named entity recognition in the biomedical
domain. In the first step, a list of as many named entities as possible is gath-
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ered, the source being either a human domain expert, or some other trusted
source. The second step involves matching the listed named entities against
the sentences in the unlabeled document pool. Third, the sentences are ranked
according to the number of diverse matches of named entities to include in the
seed set. Tomanek, Wermter and Hahn (2007b) report results from running the
same active learning experiment with three different seed sets; a randomlyse-
lected set, a set tuned according to the above mentioned method, and no seed
set at all. Though the learning curves seem to converge, initially the tuned seed
set clearly contributes to a better progression of learning.

In experimental settings, a work-around to the seed set selection problemis
to run the active learning process several times, and then present the average of
the results achieved in each round. Averaging rounds, combined with randomly
selecting a fairly large initial seed set – where its size is possibly related to the
number of classes – might prove enough to circumvent the seed set problem
when conducting controlled experiments. How the issue is best addressedin a
live setting is not clear.

4.6 Stream-based and pool-based data access

There are two ways in which a learner is provided access to data, either from a
stream, or by selecting from a pool. In stream-based selection used by, among
others, Liere and Tadepalli (1997) and McCallum and Nigam (1998), unla-
beled instances are presented one by one. For each instance, the learner has
to decide whether the instance is so informative that is should be annotated
by the teacher. In the pool-based case – used by for example Lewis and Gale
(1994), and McCallum and Nigam (1998) – the learner has access to a set of
instances and has the opportunity to compare and select instances regardless
of their individual order.

4.7 Processing singletons and batches

The issue of whether the learner should process a single instance or a batch
of instances in each iteration has impact on the speed of the active learning
process. Since in each iteration, the base learner generates classifiersbased on
the labeled training data available, adding only one instance at a time slows
the overall learning process down. If, on the other hand, a batch of instances is
added, the amount of data added to the training set in each iteration increases,
and the learning process progresses faster. The prototypical activelearning al-
gorithms presented previously, see figures 4.1, 4.2 and 4.3, respectively, do not
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advocate one approach over the other. In practice though, it is clearly easier to
fit singleton instance processing with the algorithms. Selecting a good batch of
instances is non-trivial since each instance in the batch needs to be informative,
both with respect to the other instances in the batch, as well as with respect to
the set of unlabeled data as a whole.

While investigating active learning for named entity recognition, Shen et
al. (2004) use the notions ofinformativeness, representativeness, anddiversity,
and propose scoring functions for incorporating these measures whenselecting
batches of examples from the pool of unlabeled data. Informativeness relates
to the uncertainty of an instance, representativeness relates an instanceto the
majority of instances, while diversity is a means to avoid repetition among
instances, and thus maximize the training utility of a batch.

The pool-based approach to text classification adopted by McCallum and
Nigam (1998) facilitates the use of what they refer to asdensity-weighted
pool-based sampling. The density in a region around a given document – to
be understood as representativeness in the vocabulary of Shen et al.(2004)
– is quantified as the average distance between that document and all other
documents. McCallum and Nigam (1998) combine density with disagreement,
calculated as the Kullback-Leibler divergence (equation 7), such that the docu-
ment with the largest product of density and Kullback-Leibler divergence is se-
lected as a representative of many other documents, while retaining a confident
committee disagreement. McCallum and Nigam show that density-weighted
pool-based sampling used in conjunction with Kullback-Leibler divergence
yields significantly better results than the same experiments conducted with
pool-based Kullback-Leibler divergence, stream-based Kullback-Leibler di-
vergence, stream-based vote entropy, and random sampling.

Tang, Luo and Roukos (2002) also experiment with representativeness, or
density, albeit in a different setting; that of statistical parsing. They propose
to use clustering of the unlabeled data set based on the distance between sen-
tences, the resulting clusters are then used to compute the density of examples.
Tang and colleagues define the distance between two sentences based onthe
parse trees corresponding to the sentences. A parse tree can be uniquely rep-
resented by a series of events, each of which is constituted by a parse action
and its context. Sentence similarity is calculated as the Hamming edit distance
between two sequences of events. The Hamming distance measures the num-
ber of substitutions (or errors) required to turn one sequence into the other
(Hamming 1950). The results reported by Tang, Luo and Roukos (2002)show
that taking density into account helps in keeping the amount of training data
needed down, compared to random sampling.

Brinker (2003) addresses the issue of incorporating a diversity measure
when selecting batches of instances. Brinker’s work is carried out with Support
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Vector Machines, and his batch selection method is accordingly described in
terms of feature vectors in a high-dimensional space. When selecting singlein-
stances for querying, an instance with a minimal distance to the classification
hyperplane is usually favored, since choosing such an instance will result in
halving the version space. When selecting several unlabeled instances,Brinker
(2003) argue that picking instances such that their angles are maximal with re-
spect to each other, rather than relative to the decision hyperplane, is a batch
selection technique which is both computationally cheap and scalable to large
data sets. Brinker (2003) conducts empirical investigations using a numberof
UCI data sets (Asuncion and Newman 2007), and reports results indicating
that previously approaches to active learning with Support Vector Machines
are outperformed by his batch selection strategy.

Hoi, Jin and Lyu (2006) present work on large-scale text categorization in
which a batch of documents is selected in each learning iteration. Hoi and
colleagues report on the development of an active learning algorithm utilizing
logistic regression as base learner, capable of selecting several documents at a
time, while minimizing the redundancy in the selected batch. The uncertainty
of the logistic regression model is measured using Fisher matrix information,
something which is claimed to allow for the batch selection problem to be re-
cast as an optimization problem in which instances from the unlabeled pool
are selected in such as way that the Fisher information is maximized. The
notion of Fisher information and Fisher matrix is described by Hoi, Jin and
Lyu (2006). Hoi and colleagues carry out experiments on several document
collections, using a range of learning methods, and conclude that their active
learning approach equipped with the batch selection method is more effective
than the margin-based active learning methods tested.

4.8 Knowing when to stop

A number of different approaches for knowing when to stop the active learn-
ing process have been suggested in the literature. These approaches include to
decide on a target accuracy and stop when it has been reached, to go on for a
given number of active learning iterations, or to exhaust the pool of unlabeled
data.

Some more elaborate methods monitor the accuracy as the learning pro-
cess progresses and stop when accuracy deterioration is detected. Schohn and
Cohn (2000) observe, while working with Support Vector Machines fordocu-
ment classification, that when instances are drawn at random from the pool of
unlabeled data, the classifier performance increases monotonically. However,
when Schohn and Cohn add instances according to their active learning selec-
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tion metric, classifier performance peaks at a level above that achieved when
using all available data. Thus, they obtain better performance by training on
a subset of data, than when using all data available. Schohn and Cohn (2000)
use this observation to form the basis for a stopping criterion; if the best, most
informative instance is no closer to the decision hyperplane than any of the sup-
port vectors, the margin has been exhausted and learning is terminated. This
is an approximation of true peak performance that seem to work well, Schohn
and Cohn (2000) claim.

Zhu and Hovy (2007) investigate two strategies for deciding when to stop
learning –max-confidenceand min-error – in a word sense disambiguation
task. Max-confidence relies on an entropy-based uncertainty measureof un-
labeled instances, while min-error is based on the classification accuracy of
predicted labels for instances when compared to the labels provided by the hu-
man annotator. Thresholds for max-confidence and min-error are set such that
when the two conditions are met, the current classifier is assumed to provide
high confidence in the classification of the remaining unlabeled data. The ex-
periments carried out by Zhu and Hovy indicate that min-error is a good choice
of stopping criterion, and that the max-confidence approach is not as good as
min-error.

Zhu, Wang and Hovy (2008a) extend the work presented in (Zhu and Hovy
2007) and introduce an approach calledminimum expected error strategy. The
strategy involves estimating the classification error on future unlabeled in-
stances in the active learning process. Zhu and colleagues test their stopping
criterion on two tasks; word sense disambiguation, and text classification. Zhu,
Wang and Hovy (2008a) conclude that the minimum error strategy achieves
promising results.

In addition to the max-confidence and min-error strategies, Zhu, Wang and
Hovy (2008b) introduce and evaluateoverall-uncertaintyand classification-
change. Overall-uncertainty is similar to max-confidence, but instead of taking
only the most informative instances into consideration, overall-uncertainty is
calculated using all data remaining in the unlabeled pool. Classification-change
builds on the assumption that the most informative instance is the one which
causes the classifier to change the predicted label of the instance. Zhu and col-
leagues realize the classification-change-based stopping criterion suchthat the
learning process is terminated once no predicted label of the instances in the
unlabeled pool changes during two consecutive active learning iterations. Zhu,
Wang and Hovy (2008b) propose ways of combining max-confidence, min-
error, and overall-uncertainty with classification-change in order to cometo
terms with the problem of pre-defining the required thresholds. Zhu and col-
leagues conclude that the proposed criteria work well, and that the combination
strategies can achieve even better results.
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Vlachos (2008) suggests to use classifier confidence as a means to define a
stopping criterion for uncertainty based sampling. Roughly, the idea is to stop
learning when the confidence of the classifier, on an external possibly unanno-
tated test set, remains at the same level or drops for a number of consecutive
iterations during the learning process. Vlachos shows that the criterion indeed
is applicable to the two tasks he investigates; text classification and named en-
tity recognition carried out using Support Vector Machines, maximum entropy
models, and Bayesian logistic regression.

Laws and Scḧutze (2008) investigate three ways of terminating uncertainty-
based active learning for named entity recognition;minimal absolute perfor-
mance, maximum possible performance, andconvergence. The minimal ab-
solute performance of the system is set by the user prior to starting the ac-
tive learning process. The classifier then estimates its own performance using
a held-out unlabeled data set. Once the desired performance is reached, the
learning is terminated. The maximum possible performance strategy refers to
the optimal performance of the classifier given the data. Once the optimal per-
formance is achieved, the process is aborted. Finally, the convergencecrite-
rion aims to stop the learning process when the pool of available data does
not contribute to the classifier’s performance. The convergence is calculated
as the gradient of the classifier’s estimated performance or uncertainty. Laws
and Scḧutze (2008) conclude that both gradient-based approaches, that is, con-
vergence, can be used as stopping criteria relative to the optimal performance
achievable on a given pool of data. Laws and Schütze also show that while
their method lend itself to acceptable estimates of accuracy, it is much harder
to estimate the recall of the classifier. Thus, the stopping criteria based on min-
imal absolute performance as well as maximum possible performance are not
reliable.

Tomanek and Hahn (2008) examine two ways of monitoring the progres-
sion of learning in the context of a query by committee setting for training
named entity recognizers. Their first approach relies on the assumption that the
agreement within the decision committee concerning the most informative in-
stance selected in each active learning iteration approaches one as the learning
process progresses. Tomanek and Hahn refer to this as theselection agreement,
originally introduced in Tomanek, Wermter and Hahn 2007a. The motivation
for using the selection agreement score is that active learning should be aborted
when it no longer contributes to increasing the performance of the classifier;
at that time, active learning is nothing more than a computationally expensive
way of random sampling from the remaining data.

The second approach taken by Tomanek and Hahn is to calculate the agree-
ment within the committee regarding a held-out, unannotated test set. This is
referred to as thevalidation set agreement. The idea is to calculate the agree-
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ment on a test set with a distribution of names that reflects that of the data set on
which the active learning takes place. In doing so, Tomanek and Hahn (2008)
aim at obtaining an image of the learning progression that is more true than
that obtained by calculating the selection agreement, simply because the dis-
tribution of the held-out set, and thus also the validation set agreement score,
is not affected by the progression of the learning process in the same manner
as the selection agreement score is. Tomanek and Hahn (2008) carry out two
types of experiments. In the first type, the human annotator is simulated in the
sense that the active learning utilizes pre-annotated data; the annotated train-
ing examples supplied to the system are in fact not annotated by a human at
the time the system requests assistance in classifying them, but comes from
the pre-annotated corpus. In this type of experiment, the amount of data is
typically limited. The second type of experiment conducted by Tomanek and
Hahn (2008) involves real human annotators who operate on a substantially
larger amount of data, approximately 2 million sentences, as opposed to the at
most 14 000 sentences used in the experiments with simulated annotators.

Tomanek and Hahn (2008) find that, for the experiments with simulated an-
notators (using relatively small amounts of data), both the selection agreement
curves and the validation set agreement curves can be useful for approximat-
ing a learning curve, thus indicating the progression of the learning process.
However, for the experiments employing human annotators and large amounts
of unlabelled data, the selection agreement does not work at all. Tomanek and
Hahn conclude that monitoring the progress of active learning should always
be based on a separate validation set instead of the data directly affected by
the learning process. Thus, validation set agreement is preferred over selection
agreement.

Of the approaches to defining a stopping criterion for active learning re-
viewed, only the work described by Tomanek and colleagues is explicitly di-
rected towards committee-based active learning. The other approaches involve
single classifier active learning strategies.

4.9 Monitoring progress

A very common way of visualizing how an active learner behaves is by plotting
a learning curve, typically with the classification error or F-score along one
axis, commonly the Y-axis, and something else along the other axis. It is that
something elsethat is of interest here. The X-axis is usually indicating the
amount of data seen – depending on the granularity of choice for that particular
learning task it can be for instance tokens, named entities, or sentences – or the
number of iterations made while learning. The purpose of a learning curve is
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to depict the progress in the learning process; few variations of how to measure
progress exist, and consequently there are few differences in how theaxes of a
graph illustrating a learning curve are labeled.

There are times when the graphical nature of learning curves is not an ap-
propriate means to describe the learning process. Abe and Mamitsuka (1998)
calculate thedata efficiencyachieved by using an active learning approach as
the ratio between the number of iterations required by a base learner to reach
top performance when data is drawn at random, and the number of iterations
required for the base learner in an active learning setting to reach the same
performance.

Melville and Mooney (2004) defines thedata utilization ratio– which is
similar to the data efficiency introduced by Abe and Mamitsuka (1998) – as
the number of instances an active learner requires to reach a target error rate
divided by the number that the base learner – Decorate – requires to reach the
same error rate. Bothdata efficiencyanddata utilization ratioreflect how good
an active learner is at making use of the data.

Baram, El-Yaniv and Luz (2004) propose to use a quantification of thede-
ficiencyof the querying function with respect to randomly selecting instances
from which to learn. The deficiency is defined in equation 13.

Deficiencyn(A) =
∑n

t=1(Accn(L)−Acct(A))

∑n
t=1(Accn(L)−Acct(L))

(13)

wheret is the training set size,Accn(L) is the maximal achievable accuracy
when using algorithmL and all available training data,Acct(A) is the average
accuracy achieved by active learning algorithmA and t amount of training
data, andAcct(L) is the average accuracy achieved using random sampling and
learning algorithmL and t amount of training data. The deficiency measure
captures the global performance of active learnerA throughout the learning
process. Smaller values indicate more efficient learning.

There are, of course, more parameters than data-related ones to consider
when using active learning in a practical setting, such as time, money, cognitive
load on the user, all of which relates to situations beyond the scope of active
learning proper as discussed in this chapter. Section 5.4 brings up a number of
issues relating to the cost of annotation.





5 ANNOTATION SUPPORT

This chapter concerns methods and tools for the annotation of linguistic con-
tent that, in some way or another, utilize knowledge about what is being anno-
tated in order to ease the workload for the annotator. Four dimensions along
which the annotation process can be supported are described in the following:
static, dynamic, intra-container, andinter-containersupport, respectively.

The support of the annotation process can be described in terms of the abil-
ity of the method or tool to dynamically exploit previously made annotations
as the process proceeds. Along this dimension, annotation support can be ei-
therstaticor dynamic. The source of static support does not change within the
scope of the annotation process. Dynamic support, on the other hand, takes
into account the annotations made previously by the annotator when providing
assistance in marking-up data.

Another way of characterizing the nature of annotation support pertainsto
the level at which the support is available. To be able to describe such support,
it is necessary to first introduce the concepts ofmarkableandcontainer. Ex-
actly what the term “markable” refers to depends on the annotation task. For
instance, in part-of-speech tagging, markable refers to tokens; in namedentity
recognition, markable refers to sequences of tokens; while in text categoriza-
tion, the term markable refers to documents.

A container contains markables. Analogously to the description of what
constitutes a markable, the explanation of the term “container” depends on
the annotation task. For instance, in part-of-speech tagging, the container is
usually a phrase or a sentence; in named entity recognition, the container is
a sentence; in text categorization, containers and markables refer to the same
level of abstraction, that is, documents.

The annotation process can be assisted in terms of suggestions regarding
the whereabouts and categorization of markables within a container; this type
of support is calledintra-containersupport. The support of the annotation pro-
cess can also be described in terms of suggestions about which containerto
operate on next; this kind of support is calledinter-containersupport. Note
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that while intra-containersupport does not conflict withinter-containersup-
port, the notions ofstatic anddynamicsupport do. Also note that there is no
need to distinguish between intra-container and inter-container support ifthe
container and the markable are described at the same linguistic level, such as
is the case in text categorization.

In inter-containersupport, new markables to be annotated are suggested,
for instance sentences to mark-up for named entities, or sequences of words to
annotate for part-of-speech. System-provided help at the inter-container stage
is usually based on active learning for container selection. There is, however,
a fundamental difference between active learning as such, and annotation sup-
port based on active learning; where active learning focuses on increasing the
performance of a learner without having to supply more than necessary train-
ing data, the active learning-based annotation support focuses on increasing
the quality of the data at the lowest possible cost. These two views are not
necessarily incompatible, but there are issues to be dealt with at their intersec-
tion, for instanceannotation costanddata re-use(see sections 5.4, and 5.6,
respectively).

Focusing on the annotation process brings forward an issue which is as cru-
cial in active learning as in active learning-based annotation support, but which
is more often than not neglected in research concerning the former; the actual
interaction between the human annotator and the system. Current researchon
active learning commonly simulates the human oracle by using pre-annotated
data. Consequently, active learning research rarely address the issue of user-
system interaction. In active learning as annotation support, on the other hand,
the interaction between the annotator and his tool is a major concern. To this
end, several systems described in the literature incorporate some form ofinter-
action model. Regardless of, for instance, what kind of annotation task is tobe
carried out, and whether it is carried out by a single annotator in isolation, or
by a team of annotators, there are some critical elements in the interaction that
are likely to be present in all annotation tasks. Interaction issues are further
discussed in section 5.5.

5.1 Static intra-container support

By and large, the static approach to pre-tagging, outlined in figure 5.1, hasbeen
successfully applied when, for instance, creating the Penn Treebank corpus
(Marcus, Santorini and Marcinkiewicz 1993), assigning part-of-speech tags to
the GENIA corpus (Tateisi and Tsujii 2004), building a biomedical proposition
bank (Chou et al. 2006), and marking up corpora for named entities (Vlachos
2006; Ganchev, Pereira and Mandel 2007). Here, the knowledge source – the
software performing the pre-tagging – is usually static.
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1. The corpus is annotated by means of an existing tagger.

2. Human manually corrects suggestions made by the tagger.

Figure 5.1: Outline of a system-initiated intra-container pre-tagging scheme.

Marcus, Santorini and Marcinkiewicz (1993) describe two experiments con-
ducted when constructing the Penn Treebank corpus consisting of one million
words of English coming from a number of different domains. The first ex-
periment concerns the part-of-speech tagging of the corpus, while the second
deals with marking up parse trees in the text. For the part-of-speech tagging,
Marcus and colleagues employ the method outlined in figure 5.1. Pre-tagging
was made by means of a combination of stochastic and rule-based taggers
based on the Penn Treebank tag set; the error rates obtained are reported to
range from 2–6%. The correction stage is facilitated by a common text editor
– Emacs – equipped with specially written software allowing the annotators
to correct part-of-speech errors as easily as possible. Marcus, Santorini and
Marcinkiewicz (1993) report on an experiment examining two modes of an-
notation; tagging and correction. In tagging mode, the unannotated texts were
hand-tagged, while in the correction mode, the human annotators corrected
the suggestions made by a tagger in a pre-tagging step. Marcus and colleagues
show that the semi-automatic approach to part-of-speech tagging is superior to
annotating the texts from scratch in all of the three ways of measuring perfor-
mance: tagging speed, consistency between annotators, and tagging accuracy.

Tateisi and Tsujii (2004) use the Penn Treebank tag scheme when marking
up the GENIA corpus with part-of-speech information. GENIA consists ofre-
search abstracts from the biomedical domain. The approach adopted by Tateisi
and Tsujii (2004) differs from that of Marcus, Santorini and Marcinkiewicz
(1993) in that Tateisi and Tsujii first construct a list of frequent terms specific
for the GENIA corpus. The list is then manually inspected by domain experts
and each term is assigned the appropriate part-of-speech tags. This effort is
called for by the nature of the text in this domain; Tateisi and Tsujii identify
a number of characteristics that cause problems for the annotators, the most
prominent being that capitalized names and abbreviations make the distinction
between proper and common nouns hard. The information contained in the list
of technical terms manually excerpted from the corpus forms the basis for the
pre-tagging process; a part-of-speech tagger considers that information when
assigning tags to the words in the surrounding context. During the correction
phase, the human annotator is made aware of which tags in the text stem from
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the list of terms, such tags are less likely to require correction, and the anno-
tator can concentrate on the ones introduced by the tagger. Tateisi and Tsujii
(2004) conclude that the corpus is consistently annotated, by non-domainex-
perts, using the proposed method. Their error analysis shows that the technical
terms still constitute the problematic cases.

While the pre-tagging stage in the efforts of Marcus and colleagues, and
Tateisi and Tsujii, relies on a part of their respective corpora being manually
tagged, the approach adopted by Chou et al. (2006) is fundamentally different.
Chou and colleagues utilize an existing corpus from one domain to train a se-
mantic role labeling classifier intended to operate on another domain. The clas-
sifier is trained on predicate argument structures superimposed on news wire
text in the Penn Treebank, while the target texts are taken from the GENIA cor-
pus, that is, in the biomedical domain. The annotation process consists of four
steps, approximately following the pre-tagging method outlined in figure 5.1;
identify predicate candidates constituting relations between named entities in
the target corpus, automatically mark-up the semantic roles of the predicate
candidates using the classifier trained on news wire text, transform the output
to a format suitable for the WordFreak tool (Morton and LaCivita 2003), and
finally use WordFreak to manually correct the annotations introduced by the
classifier. Chou et al. (2006) claim that their method can significantly reduce
the annotation effort required.

The differences in characteristics between domains, regarding some lin-
guistic phenomenon, can to some extent be seen as an introduction of noise.
That is, the change in how, for instance, names are expressed in domainB with
respect to how they are expressed in domainA. This observation is exploited
by Vlachos (2006) when he uses pre-tagging for marking up named entities.
The main idea in Vlachos’s approach is to pre-tag the corpus using an exist-
ing named entity recognizer, and then use active learning techniques to select
those automatically tagged names that need to be corrected by the user. In or-
der to facilitate this approach, Vlachos (2006) first experiments with various
types and amounts of artificially created noise in the training corpus forming
the base for the pre-tagger. The rationale behind this approach is that if auto-
matic pre-tagging is to be used, but not all potential errors introduced in that
step are to be corrected, it is imperative to gain knowledge about how the var-
ious kinds of errors affect the quality of the final corpus, and thus alsohow
machine learning schemes applied to the corpus may or may not pick up on
the errors. An error that does not propagate to the output of a classifier trained
on the erroneous corpus need not be corrected. Vlachos used the LingPipe
toolkit (Alias-I 2008) to train named entity recognizers on the noisy texts, and
evaluation then took place on a designated test set. Vlachos (2006) makes two
specific observations. The first is that limited noise does not significantly affect
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the tagging performance, this, in turn, suggests that not all mistakes introduced
in the pre-tagging stage need to be corrected. The second observation isthat
the number of errors in the training text is not a good indicator of the accuracy
obtained by a tagger trained on the text. Vlachos’s work includes selecting the
erroneous instances of names for the human annotator to correct, something
which will be further discussed in section 5.3.

In the scenario envisioned by Ganchev, Pereira and Mandel (2007),half the
corpus has already been manually annotated, which would entail high quality
mark-up. The goal is to annotate the remaining, untagged half of the corpus
with minimal human effort. The task at hand is that of identifying and catego-
rizing names of genes in text. Ganchev and colleagues propose the following
method: use the manually tagged part of the corpus to train a high-recall tag-
ger; then use the tagger to mark up the unannotated part of the corpus; finally,
have a human annotator filter the suggested annotations. The filtering is set up
as binary decisions; either a suggested named entity is correct, or it is not. In
the latter case, the annotation is easily discarded. Regarding the effectiveness
of their approach, Ganchev, Pereira and Mandel (2007) point out that they need
to processmoredata in order to reach a given accuracy than they would have
had if they had refrained from the binary decision approach and insteadanno-
tated all data from scratch. However, if the human effort is factored in, the cost
of annotating the data needed is lower using the method proposed by Ganchev
and colleagues, than manually annotating the data.

The work presented in Ganchev, Pereira and Mandel 2007 accentuates a
crucial issue present in the forms of pre-tagging introduced here. It concerns
the correction of suggested annotations. There are two strands. Either the use
of pre-tagging is embraced and the correction phase is viewed as a necessity
which cannot be avoided, or everything is done in order to prevent a situation in
which corrections have to be made. Although the use of pre-tagging appears to
be beneficial to tagging speed and quality of the marked-up corpora, the ques-
tion remains of the amount of human labor required in correcting suggested
annotations versus that required for inserting them from scratch.

5.2 Dynamic intra-container support

The dynamic approach to providing intra-container support is describedin fig-
ure 5.2. Examples of systems utilizing this include the Alembic Workbench
(Day et al. 1997), Annotate (Brants and Plaehn 2000), and Melita (Ciravegna,
Petrelli and Wilks 2002). These systems all have the capability to learn from
the mark-up made by the user as the annotation process proceeds. In effect,
this means that as the system picks up on the way the user annotates data,
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1. The human manually annotates a portion of the corpus.

2. The system learns from the annotations.

3. The system presents, to the human, suggestions as to what annotations can be
inserted in the text.

4. Human manually corrects the suggestions made by the system.

5. Repeat 2 to 4 until some stopping criterion is met, for instance that all available
data has been annotated.

Figure 5.2: Outline of a human-initiated intra-container pre-taggingscheme.

the annotation process will eventually turn into one where the user reviews
system-made suggestions instead of creating annotations from scratch.

The Alembic Workbench mixes hand-coded rules with machine-learned
ones in order to bootstrap corpus development for use in information extrac-
tion (Day et al. 1997, 1998). This is achieved by using a mixed initiative ap-
proach and keeping the human in the loop when annotating, largely following
the method outlined in figure 5.2. As a side effect, if somewhere in the process
of corpus development, the automatically tagged corpus is of such high qual-
ity that the human annotator does not have to correct the machine, the learned
rules constitute a domain-specific tagging procedure themselves. The sequence
of rules can then be applied to new, previously unseen, documents from which
information is to be extracted.

In the Annotate system (Brants and Plaehn 2000), the user has access toa
graphical interface for manipulating syntactic structures. Annotate has access
to a part-of-speech tagger as well as a parser, and all changes made by the user
in the interface are immediately reflected in the analysis provided by the inter-
active tools. In the method presented by Brants and Plaehn, the part-of-speech
tagger is first used to assign tags to each word in the current sentence. Based
on the probabilities of the tags, Annotate distinguishes between reliable and
unreliable tags, the unreliable ones are presented in such a way that the human
annotator is made aware of them and either confirms or corrects them. Then
the parser is activated and it incrementally suggests analyses of phrasesbased
on the previously analyzed, partial syntactic structures. If the user does not find
any of the suggested analyses appropriate, he has the option of providing a cor-
rect one himself. Brants and Plaehn (2000) point out that their approach has
two advantages over manual annotation (and thus also over the more general
approach described in figure 5.2). The first one is that the human annotator is
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guided, step-by-step, through the structure assigned to the input, meaningthat
the user actively looks at each phrase. The second advantage is that the parser
is able to immediately exploit corrections made by the user.

Melita (Ciravegna, Petrelli and Wilks 2002) incorporates an information
extraction system into the annotation process for the semantic web. As such,
the extraction system would automatically annotate things in web pages it has
learned by observing a human annotator. Melita operates in two phases:train-
ing andactive annotation with revision. The training phase, in turn, is divided
into two sub-phases:bootstrappingandtraining with verification. During the
former, the system learns from the annotations made by the human. During the
latter, the system silently competes with the user, utilizing the manually cre-
ated annotations as answer key. At this stage, the user may choose to use the
system as an support by adjusting the level of pro-activity, causing it to enter
the second main phase of operation – active annotation with revision – where
the system explicitly suggests annotations, and where any corrections madeby
the user are used as training data by the system. Ciravegna, Petrelli and Wilks
(2002) claim that the supervision required at this stage is faster, and alsolikely
to be less error prone than producing new annotations from scratch. The main
concern of Ciravegna and colleagues, is to control the timeliness and intru-
siveness of the system with respect to the human annotator and the annotation
process. These issues will be discussed in section 5.5.

Similar to the Annotate system, the work devised by Culotta et al. (2006)
takes into account any corrections made by the user. Culotta and colleagues
use the termscorrective feedbackandpersistent learningto refer to the ability
to make use of user-provided feedback, and the ability to update the learned
model with the corrections, respectively. Their argument is that by designing
more efficient mechanisms for soliciting feedback from the user, a more ef-
fective use of persistent learning is enabled. The application area addressed by
Culotta et al. (2006) is that of interactive information extraction concerning
the recognition of contact information available in various textual sources.Cu-
lotta and colleagues present a method for propagating user corrections toother
parts of the analysis under consideration; if a part of the suggested annotation
is corrected by the user, the other parts of the predicted analysis are automati-
cally updated. Furthermore, Culotta et al. (2006) show how to determine which
parts of the automatically assigned structure should be corrected by the user
first in order to, for instance, maximize the effect of the error propagation. Us-
ing these findings in an experimental active learning-based set-up, Culottaand
colleagues demonstrate that by using the proposed corrective feedback tech-
niques, the effort needed for labeling in order to train a extraction classifier is
decreased.
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5.3 Active learning as inter-container support

Recall the experiment by Ngai and Yarowsky (2000) introduced in chapter 1.
They compared active learning-based annotation for learning a base noun phra-
se chunker to manual construction of rules for the same task based on the same
corpus. Note that Ngai and Yarowsky did not compare rule writing to a sequen-
tial, randomized annotation process as a baseline, but to what is arguably the
best way of achieving informative examples to annotate; selective sampling.In
active learning, the data produced is often viewed as a side effect of anannota-
tion process that is really intended to produce a classifier with as little human
effort as possible. During the past decade, researchers have begun exploit-
ing active learning with a focus on producing annotations, examples include
corpora marked-up for parse trees (Hwa 2000), word senses (Chklovski and
Mihalcea 2002), part-of-speech information (Ringger et al. 2007), andnamed
entities (Vlachos 2006; Tomanek, Wermter and Hahn 2007b, a).

Hwa (2000) uses active learning to select sentences to be marked-up with
parse trees. The corpus constructed is then used to induce a statistical gram-
mar. The sample selection method used by Hwa is based on a single learner
using sentence length and tree entropy as means to select the sentences to an-
notate. Hwa points out that creating a statistical grammar (parser) is a complex
task which differs from the kind of classification commonly addressed by ac-
tive learning in two significant respects; where a classifier selects labels from
a fixed set of categories for each instance, in parsing, every instancehas a dif-
ferent set of possible parse trees. While most classification problems concern
a rather limited set of classes, the number of parse trees may be exponential
with respect to the length of the sentence to parse. These two characteristics
have bearing towards the complexity of the task faced by the human annotator
acting as oracle in the learning process. Hwa’s aim is to minimize the amount
of annotation required by the human in terms of the number of sentences pro-
cessed, as well as in terms of the number of brackets denoting the structure
of each sentence. Hwa (2000) thus acknowledge that the success of an active
learner may not be as simple to measure as the data required to reach a cer-
tain level of accuracy. Issues pertaining to the human effort needed to produce
annotated data will be further discussed in section 5.4.

Chklovski and Mihalcea (2002) direct their efforts towards collecting a
word sense-tagged corpus involving the general public as annotators by using
the World Wide Web as communications channel. The active learning com-
ponent used to select instances to tag is made up from two classifiers created
by two different base learners. An instance is picked out for annotationif the
labels assigned to it by the classifiers are not equal.
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In setting up the experiment, Chklovski and Mihalcea faced two rather un-
common challenges; that of ensuring the quality of annotations provided by
a potentially very large and uncontrolled selection of annotators, and that of
drawing attention to their task in order to bring in enough annotators. Chklovski
and Mihalcea dealt with the first challenge by limiting the number of tags of an
item to two, and also by limiting the number of tags assigned to an item to one
per contributor. The authors proposed to make the tagging task “game-like”,
including awarding prizes to the winners, in order for people to be inclined
to contribute. Mihalcea and Chklovski (2003) report that after the firstnine
months of being available on the web, their system had collected 90000 high-
quality tagged items.

Ringger et al. (2007) approach the task of part-of-speech tagging ofpoetry
from the British National Corpus, and prose from the Penn Treebank. In their
scenario, the constraining factor is the budget – they can only afford to annotate
so many sentences – causing Ringger and colleagues to examine active learn-
ing as a way of carefully selecting the sentences to be processed by the human
annotator. Ringger and colleagues try out query by uncertainty as well as query
by committee, both using a Maximum entropy conditional Markov model (Mc-
Callum, Freitag and Pereira 2000) as base learner. In query by uncertainty, the
uncertainty is derived from an approximation of the per-sentence tag sequence
distribution entropy. The committee members used in query by committee di-
vide the training set evenly, and disagreement is settled using the total number
of tag sequence differences among the committee members, when predictions
are compared pair-wise. Ringger and colleagues find that one of their variants
of query by uncertainty yields the best results. Once the active learning proce-
dure is complete, that is, when the budgetary limit is reached, the idea is that
the part-of-speech tagger trained on the data annotated so far is to be used to
mark up the rest of the unannotated data. Ringger et al. (2007) do not report on
how they assess the quality of the automatically inserted part-of-speech tags; a
correction phase does not seem to fit into their initial scenario, rather, theper-
formance of the generated tagger on a designated test set serves as anindirect
quality assessment of the resulting corpus.

Vlachos (2006) approaches the production of marked-up data slightly dif-
ferent than the rest; instead of employing active learning for the purposeof
selecting sentences to annotate with names, Vlachos uses it to select the au-
tomatically inserted named entity annotations that need to be corrected. In his
experiments, the active learning follows a phase where an unsupervisednamed
entity tagger is used to pre-tag the texts; the use of such a tagger is one of two
points distinguishing Vlachos’s method from the prototypical active learning
outlined in figure 4.1. The second difference is the way sample selection is
carried out; its purpose is not to identify probably informative unannotated
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sentences, but rather to identify likely errors introduced in the data by the pre-
tagger, and bring those to the attention of the human annotator. Active learning
is realized by using a Hidden Markov Model base learner in a query by un-
certainty setting where the uncertainty of a sentence is represented either as
the average uncertainty of the tokens, or as the most uncertain token in the
sentence. To assess the effects of errors introduced by the pre-tagger, a num-
ber of taggers is created by training on a corpus contaminated with various
kinds and degrees of noise (as mentioned in section 5.1). The error detection
executed in the active learning step is based on the assumption that errors are
instances that are hard for the classifier to predict, and at the same time incon-
sistent with the rest of the data. Vlachos (2006) claim that the inconsistencyof
an instance can be indicated by a mismatch between the label assigned to the
instance by the pre-tagger, and the label assigned to it by the model learned
from the data corrected so far. As a measure of “hardness”, the uncertainty of
the current model’s prediction of the instance label is used. Vlachos findsthat
his approach to use active learning to select errors to correct outperforms ac-
tive learning for selecting instances to annotate in all cases except for theone
where very noisy data had been used to train the initial pre-tagger.

Tomanek et al. (2007a; 2007b) describe the Jena annotation environment
(Jane), a client-server-based workbench for accommodating and managing the
labeling of texts. The task described by Tomanek and colleagues is that of
named entity recognition in the immunogenetics domain, although they point
out that other types of tasks are possible too. Jane contains tools supporting a
single annotator, as well as for managing teams of annotators. The administra-
tive tool facilitating the latter include modules for managing users, creating and
editing projects, monitoring the annotation progress and inter-annotator agree-
ment, and deploying the data once the annotation of it is completed. Single
annotators have the option to choose focused annotation, that is, being sup-
ported by a server-side active annotation module that selects the sentences to
be marked-up. Active learning is realized as query by committee employing
three different base learners – conditional random fields (Lafferty,McCallum
and Pereira 2001), maximum entropy, and Naı̈ve Bayes – with vote entropy as
disagreement quantification. Tomanek et al. (2007a; 2007b) perform areal-
world annotation experiment, indicating a reduction in the number of annota-
tions with between 50% and 75%. One conclusion drawn from the experiment
is that active learning is particularly advantageous when the instances of in-
terest are sparsely distributed in the texts. The density of named entities, that
is, the number of entities per sentence, in the corpus produced in the experi-
ment is almost 15 times greater than the density of names in the test corpus.
Another set of conclusions is realized as a list of requirements for facilitating
deployment of active learning in practical circumstances:
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• the turn-around time for selecting what to annotate needs to be kept
short;

• the data produced in the annotation process need to be re-usable by other
machine learners; and,

• the criterion for stopping the active learning needs to be sensitive to the
progress of the performance in the annotation process.

The requirements list presented by Tomanek and colleagues is one of several
manifestations of increasing awareness in the research community of the con-
ditions under which the human annotators operate. Concerns are raised re-
garding the usefulness of the resulting data sets for tasks other than that which
originally created the data. Questions regarding the cost of annotation, inter-
action, and re-usability of data are dealt with in the sections 5.4, 5.5, and 5.6,
respectively. The issue of stopping criteria is elaborated on in section 4.8.

5.4 The cost of annotation

Methods for providing the human annotator with support within containers, as
well as between containers, raise concerns regarding the effort needed to pro-
duce correct annotations. Cost in this sense is typically derived from monetary,
temporal, or effort-based issues. The present section is related to section 4.9,
but whereas that section concentrates on ways of measuring and illustrating
the success of active learning in terms of classifier performance versusamount
of data used, the purpose of this section is to shift the focus from learner/data
to learner/teacher.

Opting to use active learning in the first place is mainly due to the possi-
bility it opens up to obtain high performing classifiers with less data. But what
if the data comes at a cost that is not accommodated for in a practical setting?
A cost model should reflect the constraints currently in effect; for instance,
if annotator time is more important than the presumed cognitive load put on
the user, then the overall time should take precedence in the evaluation of the
plausibility of the method under consideration. If on the other hand a high cog-
nitive load causes the users to produce annotations with too high a variance,
resulting in poor data quality, then the user situation may have to take prece-
dence over monetary issues in order to allow for the recruitment and training
of more personnel.

Using a scale mimicking the actions made by the user when annotating
the data is one way of facilitating a finer grained measurement of the learning
progress. For instance, Hwa (2000) uses the number of brackets required for
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marking up parse trees in the training data as a measure of cost, rather than
using the sheer number of sentences available.

Osborne and Baldridge (Osborne and Baldridge 2004; Baldridge and Os-
borne 2004) distinguish betweenunit costanddiscriminant costin their work
on ensemble-based active learning for selecting parses. In their setting,unit
cost is the absolute number of sentences selected in the learning process.Dis-
criminant cost assigns a variable cost per sentence and concerns the decision
an annotator has to make concerning the example parse trees provided by the
system.

Culotta et al. (2006) design their system so that segmentation decisions are
converted into classification tasks. They use what they refer to as Expected
Number of User Actions (ENUA) to measure the effort required by the user
to label each example in an information extraction setting. The ENUA is com-
puted as a function of four atomic labeling actions, corresponding to annotating
the start and end boundaries, the type of a field to be extracted, as well asto
an option for the user to select the correct annotation amongk predicted ones.
The use of ENUA reflects the authors’ goal with the system; to reduce the total
number of actions required by the user. Culotta et al. (2006) notice that there
is a trade-off between how largek is, that is, how many choices the user is
presented with, and the reduction in amount of required user actions caused by
introducing the multiple-choice selection.

It is easy to see that, on average, it must be harder to annotate the units
provided by active learning, than it is annotating units randomly drawn from
the same corpus simply because the former is, by definition, more informa-
tive. Along these lines, Hachey, Alex and Becker (2005) find that the three
selection metrics they used in a live annotation experiment yield three distinct
annotation time per token/data size curves. Hachey and colleagues measure
maximum Kullback-Leibler divergence, average Kullback-Leibler divergence
and F-complement for selecting the sentences in which the annotators are to
mark up named entities. Hachey, Alex and Becker (2005) demonstrate that the
time spent on marking up an example is correlated with its informativeness.
Similarly, in the experiments conducted by Ringger et al. (2007), the selection
metric resulting in the best performance in terms of amount of data needed
to reach a given accuracy, is also the one demanding the most attention from
the user; the amount of corrections made by the oracle is clearly larger forthe
most complex selection method used.

Haertel et al. (2008) show that the active learning strategy which performs
the best depends on how the annotation cost is measured. They examine the
performance of query by uncertainty and query by committee for the task of
part-of-speech tagging under a number of cost models. The models used in-
clude what Haertel and colleagues refer to as an hourly cost model. As an
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example of how a cost model can be used in their particular setting, Haertel
et al. (2008) show that when a low tag accuracy is required, random selection
of what to annotate is cheapest according to the hourly cost model. On the other
hand, query by uncertainty is cost-effective (compared to a random baseline)
starting at around 91% tag accuracy, while query by committee is more effec-
tive than both the baseline and query by uncertainty at tag accuracies starting
at around 80%.

So far, this section has been all about inter-container support. What about
the various forms of pre-tagging used as intra-container support, whatkind of
cost do they imply? It seems as if the main concern relates to the correction
phase usually taking place after the automatic insertion of annotations in the
data. The types of corrections, or actions, needed are more often than not the
focus for researchers. For instance, Brants and Plaehn (2000) designed their
system, Annotate, so that the user can assemble an annotation from system
suggested parts instead of having the user simply correct complete annotations
suggested by their system. Brants and Plaehn claim that their way of doing it
is much faster and less error prone.

Sometimes failure is success, depending on along which scale the results
are measured. Ganchev, Pereira and Mandel (2007) design their process so as
to require binary decisions only, as opposed to full annotations/corrections,
from the user. They show that the effectiveness of their approach is inferior
to that of learning from fully manually annotated data. Their semi-automatic
method requires the annotator to process more data than he would have had if
he had chosen to manually annotate it. This is an effect of reducing the load
on the user to binary decisions. On the other hand, Ganchev and colleagues
show that less effort is required by the annotator to produce annotationsof a
quality superior to that of manually tagging. In all, Ganchev, Pereira and Man-
del (2007) conclude that, in the conducted experiments, the suggested semi-
automatic method reduced annotation time by 58%.

5.5 Interaction issues

None of the things described in the previous section as pertaining to the costof
annotation is separable from the pivotal role of user-system interaction.From
the user’s point of view, annotating is all about interacting. It is clearly not
possible to contrive a general interaction model applicable to all sorts of anno-
tation tasks, since such a model unavoidably depends on task specific parame-
ters such as: the knowledge, training, and numbers of participating annotators;
the monetary, and temporal frames of the task; and, the purpose of the creation
of the data. Nonetheless, a number of interaction-related things emerge as be-
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ing universally important and ought to receive attention, regardless of task;
timeliness, intrusiveness, anddegrees of freedom.

Timeliness(turn-around time, idle time) andsystem intrusivenessare re-
lated in that one entail the other. If the user’s work flow is interrupted due to
long turn-around times on behalf of the system, the system is often perceived
as being intrusive. Ciravegna, Petrelli and Wilks (2002) describe an experiment
involving an adaptive information extraction system that accommodates these
two issues. Intrusiveness as a side effect of system proactivity is dealt with by
presenting the user with a control in the form of a single slider allowing the
user to set thresholds indicating when the system should suggest annotations,
and when it should not. Ciravegna and colleagues find that the notion of in-
trusiveness evolves, and the user finds himself understanding it as an effect of
using the system. They also point out that the acceptable level of intrusiveness
is subjective, and that the interaction design should empower the user to select
a suitable level of intrusiveness, without having to fully understand the under-
lying mechanisms involved. Drawing the observation a step further, it is easy
to envision that a given user may perceive the same proactive behavior by the
system as moving from non-disturbing to disturbing.

In the case of active learning-based annotation, timeliness refers to the abil-
ity of the system to ask the user to annotate pieces of data in a timely manner.
That is, without interrupting the users flow. Ciravegna et al. (2002) address
this matter by using two annotation systems in parallel such that while the
user annotates documentn, in which annotations are suggested by a system
trained on annotated documents 1, ...,n− 2, the other system trains on doc-
uments 1, ...,n− 1. Adopting this approach results in a “blind” spot of the
systems, where the user can face two very similar consecutive documents to
annotate. Obviously, the number of parallel systems to use depends on the time
it takes for one system to train, related to the time the user needs to annotate
one document.

The options concerning the number of seemingly valid choices for the user
is referred to as thedegrees of freedomavailable in the interaction process. Ef-
forts by researchers to reduce the freedom in order to guide the user tomaking
correct decisions include reducing the annotation task to that of classification,
for instance in marking up phrase boundaries, or assigning parse treesto sen-
tences (Osborne and Baldridge 2004; Culotta et al. 2006; Ganchev, Pereira
and Mandel 2007). Another way is to have the user making informed choices
by stimulating him to assemble a complete annotation from parts suggested
by the system, and thereby encourage him to carefully consider each choice
possible (Brants and Plaehn 2000).
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5.6 Re-use of annotated data

Under some circumstances, active learning can evidently be used to identify
the most informative units in a corpus. What really takes place is the reorder-
ing, and elicitation, of available examples highly biased towards the prefer-
ences of the base learner and task in effect. The re-usability of the data created
in the process is the subject matter of a number of research efforts.

Baldridge and Osborne (2004) use active learning to create a corpus on
which to train parsers. In doing that, their principal worry is whether the se-
lected material will be useful if used with a base learner different than the one
used to select the data. Indeed, for their particular task, they find that thegains
of using active learning may turn out minimal or even negative. The reason
lies in how complex it is for a human annotator to assign parse trees to the se-
lected sentences. In response to this finding, Baldridge and Osborne formulate
a strategy involving semi-automatic labeling to operate in concert with active
learning. The semi-automatic technique makes use of the fact that the parser
used can provide ranked partial parses, of which the ones with higher proba-
bility than chance is presented to the user in a drop-down list. Baldridge and
Osborne (2004) conclude thatn-best automation can be used to increase the
possibility of the annotations produced being re-usable.

Tomanek, Wermter and Hahn (2007a) conduct two experiments address-
ing the re-usability of training material obtained by employing active learning
to annotate named entities in a biomedical domain. In their first experiment,
the base learners used for selecting data – calledselectors– and the learning
schemes used for testing the data – calledtesters– are varied. By keeping the
feature set fixed and using the best selector, generated by a conditional random
field base learner, Tomanek and colleagues show that feeding the tester with
data generated by faster, albeit worse performing selectors based on maximum
entropy and näıve Bayes, still yield results far better than passive learning.
Comparable results are reported for the variation of the tester’s base learner.

In the second experiment outlined in Tomanek, Wermter and Hahn 2007a,
the feature sets used by the selectors are reduced, while that of the testerre-
main fixed and full. The three reduced feature sets contain, in turn, all butthe
syntactic features, all but the syntactic and morphological features, andfinally,
only orthographic features. A committee of conditional random field selectors
employs each of the three reduced feature sets. Tomanek, Wermter and Hahn
(2007a) show that, even when using selectors in concert with the most reduced
feature set, a tester (also based on conditional random fields) still can make
use of the data and generate results better than those resulting from passive
learning.
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Vlachos (2006) points out that his approach – pre-tagging followed by an
active learning phase in which erroneously marked-up examples are selected
for correction by an oracle – is likely to yield data more re-usable than the data
created using “ordinary” active learning. This claim is based on the observa-
tion that the corpus produced by Vlachos’s method contains all data that the
initial corpus does, and although only parts of the data is manually corrected,
the errors in the uncorrected parts are possibly non-significant to a machine
learner. Since the distribution of the data in the resulting corpus is the same as
in the original one, the former is likely to be as re-usable as the latter.
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BootMark – A bootstrapping
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6 BOOTSTRAPPING THE

MARK -UP OF NAMED

ENTITIES IN DOCUMENTS

This chapter presents a three-phase method – BootMark – for bootstrapping the
annotation of named entities in textual documents. The first phase serves asa
seeding stage for the method, while the second phase constitutes the bootstrap-
ping proper, and in the third and final phase, human annotation efforts take on
the form of revising system-suggested mark-up instead of creating annotations
from scratch.

When applicable, the active learning paradigm has the desirable effect of
creating high-performing classifiers using less data than required by compet-
itive classifiers trained on a random selection of data. The BootMark method
is an attempt to orchestrate active learning in such a way that the focus of
the overall process is on creating high quality annotated corpora instead of on
creating optimal classifiers; obtaining a classifier able to operate on the intro-
duced annotations is but a secondary goal. BootMark is primarily set out to
facilitate the creation of corpora annotated with named entities, and uses the
named entity recognizers created in intermediate steps as means to achieve that
goal. The main idea is to favor the creation of data over the creation of classi-
fiers by selecting whole documents for annotation with named entities, rather
than selecting sentences; the principal result from applying this method is a
corpus of documents annotated with named entities, instead of a collection of
annotated but possibly non-related sentences. The motivation in BootMarkfor
focusing on the document level and choosing the document as the smallest unit
for building a corpus pertains to the need for annotated documents in building
or adapting information extraction systems.

6.1 What this method description is not

The BootMark method as presented in this chapter is a high-level description
of a method for marking up linguistic content in textual documents. As such,
it unavoidably comes with some constraints.
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First, despite the intention for the present chapter to be applicable as an
implementation blue-print, some steps in the description of the method will
by necessity be underspecified. All issues that require more information tobe
resolved than is available in this method description are identified as such as
they are encountered. These matters are collected in section 6.6 as a list of
emerging issues in need of further elaboration.

Second, for BootMark to be applicable, itmustbe possible to distinguish
between documents by means of the linguistic level at which the annotation
takes place. Thus, it must be possible to distinguish between documents, using
calculations at the named entity level, in order to find those cases of named
entities deemed most informative by the active learner. Depending on, for in-
stance, how the task of named entity recognition is addressed, and the charac-
teristics of the data to work with, it may not be possible to make this distinction
between documents. In that case, the performance of BootMark will be nothing
more than a computationally expensive way of random selection of documents
to annotate.

Third, BootMark does not entail an interaction design or otherwise address
the issue of what constitutes an appropriate annotation cost model. These mat-
ters are beyond the scope of the current incarnation of the BootMark method,
since they do not generalize well between tasks. On the other hand, the Boot-
Mark method description as it stands does not in any way hinder the realization
of an arbitrary cost model. The way the interaction between a user and a sys-
tem implementing the BootMark method will be realized is due to details not
part of the present description. Such details ultimately refer to, among other
things, the specifics of the task, as well as the intended user’s expertise and
goals, none of which is part of the method as such.

6.2 Prerequisites

To further constrain the description of the proposed annotation method, a num-
ber of prerequisites need to be made explicit prior to embarking on the elabo-
ration of BootMark. It is required that:

The unannotated corpus is relevant.The texts comprising the corpus to
be annotated are assumed to be of such relevance that none of them is
thought of as being an outlier. That is, the goal of applying BootMark is
to mark up all unannotated texts available.

Pre-processing tools are available.The unannotated corpus is assumed to be
appropriately pre-processed. The pre-processing necessary depends on
how the named entity recognition task is addressed, and might include,
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for instance, tokenization, part-of-speech tagging, phrase chunking, or
parsing. Any resources needed for the conversion between text andfor-
mats suitable for machine learning are also assumed to be in place, such
as gazetteers or external lexica.

Annotation guidelines are available.The user is assumed to be familiar
with, and have readily at hand, any annotation guidelines applicable to
the annotation task at hand. The annotation guidelines should also con-
tain definitions of how the quality of annotations should be evaluated.

6.3 Phase one – seeding

The purpose of the first phase of BootMark is to produce a set of annotated
documents to be used as a seed for the active learning process in phase two.
Phase one is outlined in figure 6.1 and described in the subsequent sections.
The legend to the symbols used to describe the control and data flow in the
BootMark method is available in figure 6.2.

The prerequisites of phase one include the ones listed above in section 6.2,
that is, the presence of a relevant, appropriately pre-processed, unannotated
corpus of textual documents, as well as the resources needed to convert the
annotated text into a format suitable for whatever machine learning set-up is
used, including a specification of features to use for representing annotated
material, and the parameters to use in conjunction with a given base learner. A
skilled human annotator equipped with the appropriate annotation guidelines
is also a prerequisite. The post condition, that is, the result of phase oneis
primarily a set of annotated documents, initially taken from the unannotated
corpus.

6.3.1 Select seed set

The first thing that needs attention is the selection of the seed set, represented
as the box labeledSelect seed setin figure 6.1. The seed set is the set of doc-
uments that will be manually annotated by the human annotator. A good seed
set is one in which all classes of the information to be marked up are repre-
sented in a way beneficial to the base learner, that is, preferably with a distribu-
tion between classes as even as possible. Of course, distributional information
is unlikely to be available beforehand, and measures have to be taken to ap-
proximate such information if it is found to be crucial to the task. Two things
concerning the seed set need to be decided on: its size and the constituentdoc-
uments.
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Figure 6.1: Outline of the first phase of the BootMark method.
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Figure 6.2: Legend to figures 6.1, 6.3, and 6.4.

There is a trade-off between the number of documents in the seed set and
the effort required to annotate them. If the effort is not an issue, it couldbe
argued that the number of documents in the seed set should be as large as pos-
sible. Now, effort is a constraining factor (and a motivation for the BootMark
method proper), and thus should be taken into consideration. The exact num-
ber of documents in the seed set depends on the annotation task at hand, as
well as on the ability of the human annotator.

There are primarily two ways in which the documents comprising the seed
set can be selected: either automatically or by manual inspection. In the liter-
ature both ways have their proponents. For instance, Tomanek, Wermter and
Hahn (2007b) advocate careful manual selection of a seed set of sentences to
be used in active learning for named entity recognition, while McCallum and
Nigam (1998) describe a method for learning in the context of text catego-
rization without any seed. Both methods, as well as others, are describedin
section 4.5.

The issue of how to select a seed set cannot be settled on in the general
case, it has to be decided on a per task basis and the issue is therefore deferred
to section 6.6 where it is listed as issue E–2:The constitution of the seed set.

6.3.2 Manual annotation

The annotation of the selected seed set, represented by the box labeledManual
annotationin figure 6.1, is to be made manually, without explicit support. Note
that the BootMark method does not presuppose, nor impose a specific way
of creating the annotations; an implementation of the method is required to
provide this functionality. Thus, the way manual annotation is to be carried out
is not within the scope of the present method description.
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6.3.3 Initiation of learning and transition between phases one and two

It is not strictly necessary to have the human annotator explicitly initiate the
learning process, represented by the box labeledInitiate learningin figure 6.1.
The initiation may well be coupled to the completion of the annotation of the
seed set. The initiation includes the transformation of the annotated material to
a data representation suitable for machine learning.

Although it is listed as a prerequisite to phase one, the question of desirable
characteristics exhibited by the base machine learner surfaces at this point in
the method description. The characteristics are as important and task specific as
they are impossible to specify for the general case. Thus, the issue is deferred
to section 6.6 in which it is listed as E–1:Base learner and task characteristics.

Once the learning from the annotated documents has been completed, the
BootMark method proceeds to phase two. This should require no explicit ac-
tion on behalf of the user.

6.4 Phase two – selecting documents

The second phase, depicted in figure 6.3, constitutes the core of the BootMark
method. This is where the bootstrapping of the annotation process takes place.
Essentially, phase two corresponds to the prototypical active learning algo-
rithm outlined in figure 4.1, and its purpose is to select in each iteration, from
the unannotated corpus, the document that would be most beneficial to markup
in order to increase the performance of the classifier used to select documents.

The prerequisites of phase two are an annotated corpus resulting from phase
one, a representational scheme suitable for machine learning of the annotated
information, means to convert annotations into that scheme, and an appropri-
ately set-up base learner. Additionally, and most importantly, phase two re-
quires the active learning to be set up (further elaborated on in section 6.4.1).
The post conditions of phase two are more annotated data and a classifier for
classifying annotations.

6.4.1 Automatic document selection

The automatic selection of the next document to annotate, represented by the
box labeledSelect documentin figure 6.3, is the point on which the entire
BootMark method hinges. If it is not possible, the purpose of the method is
invalidated.

At this point, the classifier trained in previous iterations, or on the seed set
if this step is taken for the first time, is used to select the most informative
document in the unannotated corpus to be marked-up.
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Figure 6.3: Outline of the second phase of the BootMark method.
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Before getting to the actual selection, there are a number of decisions to be
made, all of which are task specific. Thus, this issue is yet another one that will
be need to be resolved at the time of implementation of the method. It is listed
in section 6.6 as emerging issue E–3:Actively selecting documents.

6.4.2 Manual annotation

The manual annotation taking place in phase two, represented by the box la-
beledManual annotationin figure 6.3, adheres to the same assumptions as the
corresponding step in phase one, described in section 6.3.2.

6.4.3 Initiate learning

As with the initialisation of learning in phase one, section 6.3.3, the initialisa-
tion in phase two does not necessarily need to be made explicit; it may well be
a consequence of a completed manual annotation. The learning initialization
is represented by the box labeledInitiate learningin figure 6.3.

6.4.4 Monitoring progress

Although the description of the BootMark method does not include an interac-
tion design proper, some capabilities of a method implementation are believed
to be fundamental to the successful annotation of documents. One such basal
function is to provide the user with ways of monitoring the progress of the
annotation process, represented by the box labeledMonitor progressin fig-
ure 6.3. There are several ways to think of progress, for instance in terms of
the change in performance of the classifier selecting documents, how much
data has been annotated, how much data remains to be marked-up, the average
time it takes to annotate a document, how long it takes for the system to select
a new document to annotate, and so on.

Depending on how the named entity annotation task is realized, and the set-
up used for actively selecting documents, some of these ways of monitoring the
learning progress are harder to realize than others. For instance, keeping track
of the amount of annotated text, as well as timing the annotation process, is
likely to be fairly easy. On the other hand, tracking the classifier’s performance
might turn be a completely different matter. The most straightforward way of
accomplishing the latter is to devise a designated test set; in each iteration,
the trained classifier is then evaluated on the test set. This is the way that the
progress of experiments in active learning usually is scored. The problem with
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using a designated test set is that it has to be made readily available, either by
using an existing annotated corpus, or more likely, by having the user mark-up
documents, possibly while working on the seed set. It is possible that there
are other ways of monitoring the learning progress, without using a test set.
Information originating from the active learning process may possibly be used
to approximate a learning curve as it would have looked had a test set been
used, either by resemblance in shape, or by actual performance values.

Since the matter of monitoring the progress is an open one, it is listed in
the section concerning emerging issues in section 6.6 as E–4:Monitoring and
terminating the learning process.

6.4.5 Transition between phase two and three

The matter of going from phase two to phase three pertains to the issues of a
stopping criterion for actively selecting documents, represented by the combi-
nation of the box labeledMonitor progressand the decision whether the boot-
strapping phase is completed in figure 6.3. This is an open issue which cannot
be given a definite description prior to defining the specifics of the annotation
task. It is listed as a part of issue E–4 in section 6.6.

A number of different stopping strategies are outlined in section 4.8. Basi-
cally, the learning can either be stopped based on a criterion beyond the control
of the human annotator, or the human annotator can himself decide on an ap-
propriate time to stop the learning. If the former scheme is in effect, it seems
reasonable to stop learning when the learning does not contribute to selecting
documents. In a query by uncertainty setting, such a situation may be implied
by the decrease in learning performance such as described by, for instance,
Vlachos (2008). In query by committee, the decrease in disagreement among
the committee members concerning the classification of the most informative
instance selected in each active learning iteration may serve as an indicator of
a situation in which the active learning is no longer beneficial to the annotation
process. Another indicator is the decrease in disagreement among the mem-
bers of the committee regarding an unannotated, held-out test set of the same
distribution as the data on which the active learning takes place. Both of these
indicators are introduced and elaborated on by Tomanek and Hahn (2008). The
stopping criterion depends on the active learning paradigm applied, as well as
on the selection metric used.
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6.5 Phase three – revising

The third phase of the BootMark method is a stage where the manual annota-
tion process is turned into one of manual revising of the annotations suggested
by the system, outlined in figure 6.4. At this point, the active learning that
dominated the bootstrapping process in phase two has been terminated and the
documents to annotate are selected at random from the corpus of unlabelled
documents. A prerequisite of the third phase is the classifier created duringthe
second phase. The idea is to use the classifier as a pre-tagger of the documents
yet to be processed, and then have the human annotator manually correctthe
automatically introduced annotations. The post-conditions of the third phase
include a completely marked-up version of the entire original corpus, as well
as the classifier originating from phase two.

6.5.1 Selecting documents and suggesting annotations

After having made the transition from phase two, the system selects a docu-
ment at random from the unannotated corpus. The selected document is then
processed using the classifier from phase two in order to generate mark-up
suggestions. This stage is represented by the boxes labeledSelect document
andSuggest annotationsin figure 6.4.

6.5.2 Revising system-suggested annotations

Revising the automatically introduced annotations in a document resembles
the manual annotation of a document as described in phase one (section 6.3.2)
in that the specifics of how and what to revise is left underspecified. At this
stage, represented by the box labeledManual revisionin figure 6.4, the human
annotator has at his disposal a set of system-suggested annotations to which to
react. It is assumed that the classifier used performs so well that it makes sense
to use it as a pre-tagger; one of the major objections towards employing pre-
tagging in the first place is that it biases the user set out to revise the annotations
too much in favor of the automatically inserted mark-ups so that he misses out
on true annotations. There is no clear answer to whether pre-tagging is good
or bad, thus it is to be resolved on a per task basis. See issue E–5:Revision of
system-suggested annotationsin section 6.6.
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6.5.3 Monitoring progress

The purpose of monitoring the annotation progress in phase three is slightly
different from that of phase two. Here, it is not the performance of theclassi-
fier, and thus the progress of the learning process, that is the primary concern;
rather, the goal of monitoring the annotation process in phase three is about as-
sessing and maintaining the consistency of the annotations inserted specifically
in this phase. To this end, there are at least two ways of gathering information:
either by directly counting the number and types of changes made by the hu-
man annotator, compared to the annotations produced by the pre-tagger; or by
evaluating the classifier from phase two, at appropriate intervals, on the newly
annotated documents. The former way provides direct means of measuringthe
consistency of the automatically produced annotations with respect to the ones
introduced by the human annotator. If the number of human made alterations
of annotations increases, then this is a sign that the pre-tagger performance
has decreased. The latter way of assessing the consistency of automatically
suggested annotations, that is to evaluate the pre-tagger on newly annotated
documents and keep track of the performance, provides an indirect wayof
monitoring the consistency. Both ways can be visualized by plotting the num-
ber of changes, or the tagging performance, respectively, against the amount
of data processed. The question is what such a curve should look like. It is
not a learning curve, and since it is the degradation of the consistency ofthe
system-suggested annotations that is of interest, it seems fair to assume that a
flat curve is a good one. Any major deviations from a flat curve should prompt
the user to investigate the quality of the newly made annotations with respect
to the ones obtained as a result of the bootstrapping process in phase two.A
plausible action in a situation where the consistency is found to be inadequate
is to re-train the classifier on all available data in order to incorporate recent
changes into future predictions.

6.5.4 When to stop annotating

The termination of the BootMark method is a data-centric decision. The ob-
vious point at which to stop the annotation process is when there is enough
marked-up material; either when the unannotated corpus is exhausted, or when
the user determines the amount of annotated data is enough for whatever pur-
poses it is to be used.
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6.6 Emerging issues

The method described thus far admittedly is underspecified in some respects
that it should not be. In fact, the implementation of most of the steps in the
different phases is open-ended with respect to the task at hand. The items in
this section are aggregations of the issues in need of further investigation by
anyone interested in implementing the BootMark method.

E–1 Base learner and task characteristics.The realization of the
named entity task, including the representation of instances, in-
fluences what machine learning schemes are applicable. The be-
havior of the base learner when applied to randomly selected doc-
uments constitutes a baseline with which it is possible to assess
the progress of the bootstrapping process; the active selection of
documents should yield results better than those accomplished in
the baseline case.

How can the target concept be represented? What candidate base
learners are there? What are good parameter settings for those
base learners with respect to the data available? What are the char-
acteristics of the base learners with respect to the task at hand in
terms of time to train it, time to apply it, and accuracy?

E–2 The constitution of the seed set.The compilation of the set of
documents constituting the initial seed from which to start the an-
notation process is crucial.

How many documents should be in it? How are the documents
best selected?

E–3 Actively selecting documents.As previously pointed out, the ap-
plicability of the BootMark method hinges on the ability to ac-
tively select documents with respect to the linguistic level at which
the annotation is to be made.

What active learning paradigms are applicable? What disagree-
ment or uncertainty metrics are available for those learning para-
digms?

E–4 Monitoring and terminating the learning process. Are there
other means to make visible the learning progress than that of pro-
viding a designated held-out, annotated test set? Also, the question
of when, and how, the active learning process constituting the core
of the bootstrapping phase should be terminated is closely related
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to the issue of monitoring the learning progress. Hence, this is-
sue also covers the questions: When should the active selection
of documents terminate? Is it possible to define such a stopping
criterion beforehand, or should the learning process be terminated
by means of the user’s good judgement?

E–5 Revision of system-suggested annotationsThere are, as previ-
ously mentioned, two strands to the question of the soundness of
pre-tagging with revision. The typical objection to such an ap-
proach raises the potential bias introduced by the automatically
inserted annotations as a primary reason that it should be avoided.
The praise for pre-tagging with revision, on the other hand, is of-
ten derivable from the fact, or assumption, that the approach can
be used to speed the annotation process up, albeit possibly with
repercussions on annotator workload.

There are primarily two questions concerning pre-tagging with re-
vision pertaining to the BootMark method. What are the require-
ments on the classifier used as pre-tagger in terms of, for instance,
accuracy, to be able to be fruitfully used as a pre-tagging device?
Is pre-tagging with revision applicable during the bootstrapping
taking place in phase two, or will the performance of the classifier
be so bad that it hinders the user, rather than helps him?

6.7 Relation to the work by others

After having introduced and explained the BootMark method in the previous
sections, the time is ripe to relate it to the work presented by others. The Boot-
Mark method is novel and unique in the way active learning is used for boot-
strapping. More specifically, the difference between the abstraction level of
the container (document) and the markable (name) is what makes BootMark
special.

According to the taxonomy introduced in chapter 5, the BootMark method
would fall under the categoriesactive learning as inter-container support(sec-
tion 5.3), anddynamic intra-container support(section 5.2). It thus makes
sense to compare BootMark to the efforts presented in each of those sections.

The approaches described as being active learning for inter-container sup-
port in section 5.3 all differ from BootMark in one important respect; that of
the granularity of the markable versus that of the container. Typically, when
active learning is involved, the markables (chunks of data selected) is at ap-
proximately the same level of linguistic abstraction as the containers (chunks
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which the classifier finds informative). This makes sense since the task, in such
situations, is most likely to train a classifier exhibiting the best performance
attainable with the least human annotation effort possible. For instance, when
using active learning for text categorization, the document level is often the one
targeted when selecting examples, which is also the level of labeling; hence,
there is no discrepancy between selection level and operation level see,for
instance, the work by Lewis and Gale (1994), and Hoi, Jin and Lyu (2006).

In active learning for other types of linguistic information, it may not be
feasible to assume a one-to-one correspondence between the linguistic level of
the target concept and the abstraction level of the markables selected to real-
ize the target concept. For example, when learning to classify part-of-speech
information, it will be very hard, and in some cases impossible, for the human
annotator to accurately decide on a proper part-of-speech tag for a word if that
word is selected and shown out of context. In such cases, the selected chunks of
data are usually comprised by sentences, as described by, for example,Ringger
et al. (2007).

The inter-container support presented in section 5.3 all utilizes active learn-
ing in order to select sentences to mark-up with, for example, parse trees (Hwa
2000; Baldridge and Osborne 2004), word senses (Chklovski and Mihalcea
2002), part-of-speech information (Ringger et al. 2007), and named entities
(Vlachos 2006; Tomanek, Wermter and Hahn 2007b, a).

In the category dynamic intra-container support, the BootMark method has
a lot in common with the other approaches described as such in section 5.2;
all benefits and drawbacks of any other attempt at realizing pre-tagging with
revision are applicable to the BootMark method.

Perhaps most notable is BootMark’s resemblance to Melita (Ciravegna, Pe-
trelli and Wilks 2002; Ciravegna et al. 2002). In one of its phases, Melita
employs a named entity recognizer which is dynamically trained on a per-
document basis using the annotations made by the human annotator, to propose
new annotations to be inserted by the user. The purpose of Melita, at that stage,
is to turn the annotation process into the revising of proposed annotations. The
significant difference between Melita and BootMark is that the former is not
concerned with how the documents to annotate are selected; it is implied that
Melita is not at all involved in selecting documents to annotate, instead the
decision is made by the human annotator. Thus, Melita does not use an active
learning strategy.





Part III

Empirically testing the
BootMark method





7 EXPERIMENT DESIDERATA

To be able to judge the plausibility of the BootMark method introduced in
chapter 6, the emerging issues outlined in section 6.6 have to be investigated
and elaborated on in detail with respect to a specific task. The purpose ofthis
chapter is to provide a rationale for such a task in order to allow for empirically
testing the emerging issues.

Recall that the overall motivation for the work presented in this disserta-
tion is to facilitate the creation of annotated corpora intended to be used for
creating and adapting information extraction systems to meet new information
needs. Consequently, a task suitable as context for investigating the emerging
issues should be firmly rooted in the information extraction domain. Named
entity recognition is a task fundamental to information extraction and is the
task selected to serve as the backdrop of inquires relating to the five emerging
issues listed in section 6.6. Here, named entity recognition is taken to include
both identification and categorization of named entities.

7.1 The data

The data at hand is the training portion of the named entity part of the MUC-7
corpus regarding air crashes (Linguistic Data Consortium 2001).6 The part of
the MUC-7 corpus used contains 100 documents, 3480 sentences, and 90790
tokens. The number of sentences and tokens was calculated after the corpus
had been processed with the functional dependency grammar introducedin
section 7.2.1; the grammar affect the number of tokens in that some multi-word
units are considered one token, an example of which isen routein figure 7.3.

There are 6336 names, of which 4958 are of type ENAMEX, 1238 of type
TIMEX, and 140 of type NUMEX. A further breakdown of the corpus into
numbers is provided in table 7.1. As can be seen from the figures in the table,
the sizes of the documents in the corpus vary quite a bit, both in terms of

6The training part of the MUC-7 corpus is henceforth referred to asthe MUC-7 corpus.



88 Experiment desiderata

 0.1

 1

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23

N
um

be
r 

of
 n

am
es

Length measured in tokens

The distribution of names per length measured in tokens

ENAMEX
TIMEX

NUMEX

Figure 7.1: The distribution of name types per length in tokens.

TOKENS ENAMEX TIMEX NUMEX NAMES TYPES SENT

SENT Min 1.00 0.00 0.00 0.00 0.00 0.00 —
Max 116.00 17.00 7.00 3.00 21.00 3.00 —
Avg 25.91 1.42 0.36 0.04 1.82 0.90 —
Sd 14.75 1.84 0.73 0.24 2.30 0.75 —

DOC Min 280.00 8.00 2.00 0.00 10.00 2.00 9.00
Max 3240.00 165.00 49.00 23.00 217.00 3.00 147.00
Avg 907.90 49.58 12.38 1.40 63.36 2.41 34.80
Sd 423.12 25.78 7.15 3.14 31.40 0.49 19.22

Table 7.1: Statistics about the MUC-7 corpus in terms of tokens, sentences, docu-
ments, and names. For sentences (SENT) and documents (DOC), the mini-
mum (Min), maximum (Max), average (Avg), and standard deviation (Sd)
are shown for tokens, names, and name types.

number of tokens and sentences; 907.90 tokens per document on average with
a standard deviation of 423.12, and 34.80 sentences per document on average
with 19.22 in standard deviation. Table 7.1 further shows that there are names
in every document, but not in all sentences – the average number of namesin
a document is 63.36, while the average per sentence is 1.82 – and that each
document contains at least two name types. ENAMEX is the largest groups
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Figure 7.2: An illustration of the distribution of names in MUC-7. Columns denotes
documents, rows denotes tokens. Black squares represent tokens of type
ENAMEX, white represents NUMEX, while dark grey denotes TIMEX.
Medium grey represents tokens that are not part of names. Note the long
vertical line of dark grey squares approximately in the middle of the right
hand side part of the figure. It is the 22 token long TIMEX expression,
with an embedded ENAMEX, listed as the longest name in the corpus in
figure 7.1: “ Two harrowing hours after its crew lost much of its ability
to navigate while at 35,000 feet over the North Atlantic,”.

of names with, on average, 1.42 names per sentence, and 49.58 names per
document. Only the NUMEX name type is not present in all documents.

The length of the names of each type is available in figure 7.1. The TIMEX
type of name is distributed over the largest length span (1 - 22 tokens in length)
follwed by ENAMEX (1 - 9 tokens), and NUMEX (1 - 5 tokens). The average
length of a TIMEX name is 1.61 tokens (with a standard deviation of 1.35),
while the average ENAMEX is made up from 1.52 tokens (standard deviation
0.89), and NUMEX is 1.95 tokens (standard deviation 0.71).
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Figure 7.2 illustrates the distribution of names in the MUC-7 corpus. The
smaller part on the left represents the whole corpus, while the larger parton
the right is an enlargement of the circled portion on the left hand side. Each
column – one square wide – denotes one document. The larger part of the
image is 100 squares wide, which means that all documents in the corpus are
represented. Each row – one square high – represents tokens. The larger part of
the image is 100 squares high and thus represents the first 100 tokens in each
document. A black square means that the token in the corresponding spot in
the document is of type ENAMEX. White means NUMEX, while dark grey
means TIMEX. The dominating medium grey color represents tokens that are
neither type of names. As illustrated by figure 7.2, names tend to occur more
frequently at the beginning of documents, while being decreasingly common
as each document proceeds.

7.2 Technical set-up

When setting out to conduct experiments concerning named entity tagging,
tools for linguistically analyzing, programatically handling, and automatically
learning from textual documents are obviously needed. This section describes
the tools used throughout the remainder of the dissertation.

7.2.1 The Functional Dependency Grammar

The English Functional Dependeny Grammar (EN-FDG, version 3.6) from
Connexor Oy is used for linguistic analysis (Tapanainen and Järvinen 1997).
The EN-FDG is a commercially available parser which carries out tokeniza-
tion, part-of-speech tagging, lemmatization, the assignment of grammatical
functions, as well as dependency parsing. The strengths of the EN-FDG in-
clude the ability to always deliver at least one (albeit possibly partial) analysis
of the input.

Figure 7.3 contains the same example sentence as presented in figure 2.1,
only this time the sentence has been processed by EN-FDG. The input to EN-
FDG is plain text, possibly with very restricted XML tags present. All XML
tags are passed through unaffected, unless they contain white space charac-
ters. As this is the case with any sensible mark-up, additional pre-processing
measures are taken to prevent the EN-FDG to erroneously process XMLtags.
XML tags in the input text are percent-encoded7 before the text is fed to the

7Percent-encoding (URL-encoding) is described inUniform Resource Identifier (URI):
Generic Syntaxavailable at<http://tools.ietf.org/html/rfc3986>.
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<ENAMEX TYPE="ORGANIZATION">

1 <s> <s>

1 Massport massport attr:>2 @A> %>N <?> N NOM SG

</ENAMEX>

2 officials official subj:>3 @SUBJ %NH N NOM PL

3 said say main:>0 @+FMAINV %VA V PAST

4 the the det:>7 @DN> %>N DET SG/PL

5 replacement replacement attr:>6 @A> %>N N NOM SG

<ENAMEX TYPE="ORGANIZATION">

6 Martinair martinair attr:>7 @A> %>N N NOM SG

</ENAMEX>

7 jet jet subj:>8 @SUBJ %NH N NOM SG

8 was be obj:>3 @+FMAINV %VA V PAST SG1,3

9 en route en route >8 @ADVL %EH ADV

10 from from sou:>8 @ADVL %EH PREP

<ENAMEX TYPE="LOCATION">

11 Europe europe pcomp:>10 @<P %NH N NOM SG

</ENAMEX>

12 to to pth:>10 @ADVL %EH PREP

<ENAMEX TYPE="LOCATION">

13 New Jersey new jersey pcomp:>12 @<P %NH N NOM SG

</ENAMEX>

14 , ,

15 but but cc:>8 @CC %CC CC

16 was be cc:>8 @+FMAINV %VA V PAST SG1,3

17 diverted divert @-FMAINV %VP EN

18 to to ha:>17 @ADVL %EH PREP

<ENAMEX TYPE="LOCATION">

19 Logan logan attr:>20 @A> %>N N NOM SG

</ENAMEX>

<TIMEX TYPE="DATE">

20 Tuesday tuesday pcomp:>18 @<P %NH N NOM SG

</TIMEX>

21 <p> <p>

<TIMEX TYPE="TIME">

1 <s> <s>

1 afternoon afternoon main:>0 @ADVL %EH N NOM SG

</TIMEX>

2 . .

Figure 7.3: The example sentence from Figure 2.1 processed with the English Func-
tional Dependency Grammar, FDG, from Connexor.
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EN-FDG. For brevity, the XML tags in figure 7.3 have been decoded. The
output of EN-FDG is in plain text, as illustrated by figure 7.3.

7.2.2 Kaba

To facilitate the programmatic handling of linguistically analyzed textual docu-
ments – for instance documents processed with the abovementioned EN-FDG
– software has previously been developed in-house at SICS, the Swedish In-
stitute of Computer Science AB (Olsson 2002). The software package, called
Kaba, is a partial Java implementation of the TIPSTER document management
architecture (Grishman et al. 1997). During the course of the experimentsde-
scribed in chapters 8 to 12, Kaba is further developed and adjusted to fit the
needs of the particular experimental set-up used. In effect, Kaba acts as glue,
integrating the document handling with the capabilities of the implementations
of machine learners available in Weka (described below).

7.2.3 Weka

The machine learning toolbox of choice throughout the experiments is Weka
(Witten and Frank 2005), which is a freely available, and large, collection of
machine learning algorithms implemented in Java.8 The algorithms can be uti-
lized via a provided application programmer’s interface (API) or via Weka’s
own graphical user interface. Weka is primarily selected due to the vast num-
ber of machine learning schemes available, as well as the swift support implied
by Weka’s large user community.

For the first set of experiments, concerning base learner characteristics de-
scribed in chapter 8, the possibility of using the Weka Experimenter is par-
ticularly useful. The Weka Experimenter allows for defining machine learning
experiments on one machine, and then run these experiments from the com-
mand line on other more powerful servers. The Experimenter allows for run-
ning sets of machine learning algorithms with different settings on various sets
of training and test data, and then analyze the results using a number of differ-
ent metrics.

For the experiments described in the remainder of the dissertation, the API
is the primary way of using Weka; the object oriented nature of the API allows
easy extension of existing base learners to accommodate for the special needs
encountered in experimenting with active learning.

8Weka is available on the Internet at<http://www.cs.waikato.ac.nz/ml/weka/>.
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@relation illustrative-example

@attribute isAlphaNumeric NUMERIC

@attribute isDigitsAndAlpha NUMERIC

@attribute isDigitsAndPeriod NUMERIC

@attribute isFirstInSentence NUMERIC

@attribute isInitCaps NUMERIC

@attribute containsSpace NUMERIC

@attribute length NUMERIC

@attribute targetClass { OUT, LOCATION, ORGANIZATION, TIME, DATE }

@data

1 0 0 1 1 0 8 ORGANIZATION

1 0 0 0 0 0 9 OUT

1 0 0 0 0 0 4 OUT

1 0 0 0 0 0 3 OUT

1 0 0 0 0 0 11 OUT

1 0 0 0 1 0 9 ORGANIZATION

1 0 0 0 0 0 3 OUT

1 0 0 0 0 0 3 OUT

1 0 0 0 0 0 3 OUT

1 0 0 0 0 1 8 OUT

1 0 0 0 0 0 4 OUT

1 0 0 0 1 0 6 LOCATION

1 0 0 0 0 0 2 OUT

1 0 0 0 0 1 10 LOCATION

1 0 0 0 0 0 1 OUT

1 0 0 0 0 0 3 OUT

1 0 0 0 0 0 3 OUT

1 0 0 0 0 0 8 OUT

1 0 0 0 0 0 2 OUT

1 0 0 0 1 0 5 LOCATION

1 0 0 0 1 0 7 DATE

1 0 0 0 0 0 9 TIME

1 0 0 0 0 0 1 OUT

Figure 7.4: The example sentence from Figures 2.1 and 7.3 represented using the
Attribute Relation File Format, ARFF.
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7.2.4 ARFF

Weka requires the data it operates on to be in what is known as the Attribute
Relation File Format, or ARFF for short (Witten and Frank 2005). An ARFF
file consists of two parts; a header describing the attributes by which each
instance is represented, and a data section where all instances are represented
as feature vectors. Each feature can be one of the data typesnumeric, nominal,
string, or date.

One of the steps taken to turn the textual data into ARFF is to decide on
which features should represent the instances that the machine learning algo-
rithms in Weka are to operate on (see section 8.2 for an elaboration on the
features chosen).

Figure 7.4 shows the sentence from figure 2.1 represented using ARFF.The
attributes are selected for illustrative purposes only and they will not make for a
good distinction between the target classes. There are eight attributes declared
in the@relation part. The first seven attributes are numeric, while the last one
is nominal, reflecting the classes into which each instance will be classified.
In the example, there are five possible classes. The@data section holds the
actual representations of the instances. Each token in the sentence in figure 2.1,
when processed with the EN-FDG as shown in figure 7.3, is represented by one
instance in figure 7.4. ThetargetClass attribute is only used by the machine
learners when training on the data; an instance to be classified is represented
by all but the target attribute.

The ARFF does not impose an order among the instances. If one wishes to
extend the example in figure 7.4 to incorporate context information for each
token, that information has to be represented using additional attributes by
adding, for instance,classOfPrevious to the@relation section and extend
each instance accordingly. However, what is important is the order of theat-
tributes, as they are treated by position internally in Weka, rather than by name;
switching the place of two attributes may result in erroneous classifications, or
inseparable training examples. Weka provides a range of Java classes tohandle
ARFF.

7.3 The BootMark prerequisites re-visited

The prerequisites made explicit prior to embarking on the description of the
BootMark method in section 6.2 are met in the following ways by means of
the present chapter:

The corpus is relevant.Given the task of named entity recognition (chap-
ter 2), the training part of the MUC-7 named entity recognition sub-task
is highly relevant, well-researched, and well-documented (section 7.1).
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The availability of pre-processing tools.The Functional Dependency Gram-
mar by Connexor will be used for linguistic analysis of the MUC-7 cor-
pus (section 7.2.1). The WEKA machine learning libraries, and the Kaba
platform will form the basis for the machine learning required to solve
the task (sections 7.2.3 and 7.2.2).

Annotation guidelines. The training part of the MUC-7 data is annotated
with named entity information, which is a prerequisite for the evalua-
tion of the experiments to come. The guidelines are accompanied by
definitions of appropriate performance metrics (elaborated on in sec-
tion 8.7.1).

The scene is now set for empirically investigating the plausibility of the Boot-
Mark method as described in chapter 6 by means of addressing the emerging
issues listed in section 6.6.





8 INVESTIGATING BASE

LEARNERS FOR NAMED

ENTITY RECOGNITION

This chapter is devoted to investigating the subject matter of the first emerging
issue raised in chapter 6, section 6.6 concerning base learner characteristics
and named entity recognition. The task of named entity recognition can be
formulated as follows:

Definition Let D be a document, andL be the set of classes of names to rec-
ognize, then the goal of named entity recognition is to learn a classifierC such
thatC:n→ l for all namesn∈ D, wherel ∈ L.

Given this definition of the task, the following questions are examined:

• What information should be included in the representation of a name?

• What candidate base learners are there?

• What are good parameter settings for those base learners with respect to
the data available?

• What are the characteristics of the base learners with respect to named
entity recognition in terms of time required to train, time required to
apply a classifier, and classification accuracy?

The answers to the above questions are used in chapters 9 to 12 to form thebase
for the design and implementation of the experiments addressing the remaining
emerging issues. When the combinations of representational schemes and base
learners have been evaluated with respect to the named entity recognition task,
it will be possible to select the best combination to be used as a baseline.

8.1 Re-casting the learning problem

Names are often more than one token in length. For instance, the names in the
ENAMEX class in the part of the corpus used in this experiment are on average
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1.52 tokens long (section 7.1). This is a fact which complicates the named
entity recognition task as it is defined on the previous page since it does not
leave any clues as to where the names in the text should be sought for: Should
each possible sub-string in the document be considered a potential name, or
should perhaps each n-gram combination of tokens in the text be considered
a name candidate? A solution is to re-define named entity recognition as a
token classification task which purports to deciding whether each individual
token in a text is a part of a name, instead of trying to recognize whole names
all at once. Following the IOB labelling scheme proposed by Ramshaw and
Marcus (1995), the initial named entity recognition task of assigning one of
the seven classes of names to a chunk of text, can be turned into a 15-class
task in which each token in the text is assigned a tag indicating if it is located
in (I), outside (O), or at the beginning (B) of a name. Thus, the task of named
entity recognition is that of assigning, to each token in the input, one of the 15
labels in table 8.1. The initial definition of the named entity recognition task is
re-casted as follows.

Definition Let D be a document, and letL be the set of classes of names in
table 8.1, then the goal of named entity recognition is to learn a classifierC
such thatC: t → l for all tokenst ∈ D, wherel ∈ L.

B-PERSON I-PERSON
B-ORGANIZATION I-ORGANIZATION
B-LOCATION I-LOCATION
B-MONEY I-MONEY
B-PERCENT I-PERCENT
B-TIME I-TIME
B-DATE I-DATE
OUT

Table 8.1: Target classes in named entity recognition.

B-X is assigned to a token if it is the first token in a sequence of typeX and
if the immediately preceding token is the last one in a sequence of the same
type. I-X is assigned to tokens otherwise appearing in a sequence of typeX.
OUT is assigned to tokens that are not part of a name.

8.2 Instance representation

Now that the task has been broken down to a finer grained and more manage-
able one, it is time to focus on how each token should best be represented to
facilitate learning. In machine learning, the examples from which to learn, and
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Cardinal/ordinal tag1 Is first name?3

Case tag1 Is four digit number?2

Class of previous previous4 Is hyphen?2

Class of previous4 Is initial caps?2

Comp tag1 Is location?3

Contains digits and dollar?1 Is name part?3

Contains dollar?2 Is roman number?2

Contains percent?2 Is salutation?3

Contains punctuation?2 Is sentence delimiter?1

Contains white space?2 Is single cap and period?2

Dependency function tag1 Is single character?2

Grammatical function tag1 Is single character and period?2

Is all caps?2 Is single lower case character and period?2

Is all digits?2 Is two digit number?2

Is all lower case?2 Morph tag1

Is alpha numeric?2 Num tag1

Is any or all digits?2 Part of speech tag1

Is company descriptor?3 Prefix2

Is digits and alpha?2 Suffix2

Is digits and comma?2 Surface form1

Is digits and dash?2 Surface lemma form1

Is digits and period?2 Syntactic tag1

Is digits and slash?2 Tense tag1

Is first in sentence?1 Length in characters2

TARGET CLASS

Table 8.2: The superscript next to the feature names denote the origin of the feature.
Features marked: (1) are calculated based on the linguisticpre-processing
of the input made with the EN-FDG; (2) originate from the surface ap-
pearance of the text; (3) are fetched from pre-compiled lists of informa-
tion; and (4) depend on predictions made concerning the context.

consequently also the unseen instances to classify, are commonly represented
as vectors of features. Each feature corresponds to a piece of information that
is believed to contribute to making possible the distinction between feature
vectors belonging to different classes.

The task of named entity recognition has been thoroughly investigated, for
example in MUC. Some of the important features used to represent names are
described by, for instance, Bikel, Schwartz and Weischedel (1999),Borthwick
et al. (1998), and Nadeau and Sekine (2007). The features used in this ex-
periment are such features that have contributed to good results as reported
by others, as well as a range of other features that are due to the use ofthe
EN-FDG (section 7.2.1). The full list of features used to represent a single
token is available in table 8.2. All features except for the target class are rep-
resented numerically. The target class is a nominal feature that can take any of
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the values listed in table 8.1. The features can be categorized according to their
origin. Some of the features are made possible by linguistically pre-processing
the input text, others are drawn from the surface appearance of the words in
the text, while yet others have their source in pre-compiled lists, or in the pre-
dicted class of a token’s surroundings. Each feature, except for thetarget class,
in table 8.2 is marked as belonging to one of the four feature categories. The
pre-compiled lists used in this experiment stem from a wide variety of projects
conducted during the course of several years at SICS; the lists have not been
developed nor examined with respect to their coverage of the data used in the
present experiment.

Each token can be represented in terms of its context. For instance, a con-
text window size of 0 means that a token is represented by means of itself only.
A context size of 1 means that a token is represented by means of itselfand
the token immediately to the left, and the token immediately to the right. In
the current experiment, data sets corresponding to context window sizesof in-
trinsic, 0 to 5 (inclusive) are used. In the intrinsic representation of instances,a
token is represented by the features outlined in table 8.2, except for the features
class of previous previous, class of previous, andis first in sentence. Arguably,
there are more features than the aforementioned three that can be considered
extrinsic; the excluded features are such that clearly require informationbe-
yond that carried by the single token to compute. The reason to include the
intrinsic token representation in the experiment is to examine how well the
machine learning schemes used can classify a token by means of information
stemming from mainly the token itself.

The values of the features listed in table 8.2 are calculated for each token
within the context window. For instance, if a context size of two tokens on the
left and two tokens on the right of the current main token is used, the number
of features used for representing the main token is

2× (N−1)+N+2× (N−3) = 237

whereN is the number of features presented in table 8.3. The target class fea-
ture is only calculated for the main token, and the predicted class of a previous
token is not available for the right hand context. As shown in table 8.3, the
number of features used to represent a single token increases considerably as
a wider context is used.

8.3 Automatic feature selection methods

The sheer amount of features used to represent each token lead to the question
whether all those features really help in telling one class from another. There
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CONTEXT # FEATURES

intrinsic 46
0 49
1 143
2 237
3 331
4 425
5 519

Table 8.3: The number of features used to represent a token in each context size.

are means by which a given feature set can be reduced – feature selection –
while still maintaining the expressiveness of the retained representation. The
reason for reducing the number of features is primarily to speed up the learning
process, but also to reduce the size of the resulting classifier.

The feature selection problem can be defined as one in which one wishes
to find a minimum set ofM relevant features that describes the data set at hand
equally well as the originalN features do, and whereM < N. Feature selection
is usually divided into two approaches; one is about making decisions about
which features to select based solely on the characteristics of the data at hand
(so called filter methods or intrinsic methods), while the other also involves the
learning method under investigation (wrapper methods or extrinsic methods).
An overview of feature selection schemes is given by, for instance, Wittenand
Frank (2005).

Hall and Holmes (2003) investigate the performance of a number of auto-
matic feature selection techniques on a range of data sets. Following the con-
clusions made by Hall and Holmes, two intrinsic feature selection methods are
chosen for inclusion in the present experiment; consistency-based feature sub-
set evaluation (Liu and Setiono 1996), and correlation-based feature selection
(Hall 1999).

The key to consistency-based feature selection is an inconsistency criterion
for specifying whether dimensionally reduced representations are acceptable.
The criterion is used for iteratively comparing randomly selected feature sub-
sets in a way such that the subset which is deemed most consistent with respect
to a pre-defined rate is used as a replacement for the original feature set. Liu
and Setiono (1996) claim their method to be fast and unaffected by any bias
introduced by a learning algorithm.

The main idea in correlation-based feature selection is to select those fea-
tures that are highly correlated with the target class, but not with each other.
Hall (1999) empirically shows that the method, in many cases, improves clas-
sifier accuracy.
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ALGORITHM FAMILY WEKA IMPLEMENTATION

Decision tree learner J48
REPTree

Rule learner JRip
PART

Bayesian learner NaiveBayes
NaiveBayesUpdateable

Lazy learner IBk
Function Radial Basis Function

Logistic

Table 8.4: The machine learning families and Weka implementations used in the
experiment.

Consistency-based feature selection as well as correlation-based feature se-
lection are applied to the data set in which instances are represented with a 5
token context window, that is, the widest context, containing 519 featuresto
choose from.

8.4 Candidate machine learning schemes

Although Weka, which is the machine learning platform of choice in this ex-
periment as explained in section 7.2.3, contains numerous machine learning
schemes, it does not comprise all the ones reported as successful in thelitera-
ture concerning named entity recognition. Most notably, Conditional Random
Fields and Hidden Markov Models are not included in Weka, and they will
consequently not be included among the candidate base learners. The machine
learning methods under scrutiny are chosen since they represent a fairly broad
spectrum of the algorithms used for named entity recognition (see chapter 2),
but the selection is by no means claimed to be an exhaustive one. The selected
algorithms stem from different families of learners, as outlined in table 8.4.
Introductions to each of these learning methods are available in chapter 3.

Given the investigations to come concerning active learning and document
selection, machine learning methods that accommodate rapid learning are de-
sirable. This is the case since, as evident by the prototypical active learning
algorithms introduced in chapter 4 (figures 4.1, 4.2, and 4.3, respectively), ac-
tive learning regularly enforces re-training of classifiers as more annotated data
is made available. Intuitively, what is needed are methods for learning that al-
low for adding new training data as it appears, that is, methods for incremental
machine learning. Two such methods are explored; a method for incremen-
tal Bayesian learning called NaiveBayesUpdateable (John and Langley1995),



8.5 Parameter settings103

and a Nearest Neigbor learner, IBk (Aha, Kibler and Albert 1991). In addition,
a näıve Bayesian learner – NaiveBayes – is included in the experiment to serve
as reference by which the influence of the incremental learning performed by
the NaiveBayesUpdateable is judged.

The family of decision tree learners is represented by J48, which is an im-
plementation of Quinlan’s C4.5 (Quinlan 1993), and REPTree, which is a com-
paratively fast but memory consuming learner.

For learning rules, JRip, and PART are used. The former is a propositional
rule learner – an implementation of RIPPER (Cohen 1995) – while the latter
builds partial C4.5 decision trees in each iteration and makes the “best” leaf a
rule (Frank and Witten 1998).

There evidently is a very large range of Artificial Neural Network configu-
rations to test. The one included here, RBFNetwork is an implementation of a
Radial Basis Function (Powell 1987). RBFNetwork is a two-layer feedforward
network that differs from a multilayer perceptron in the way that the hidden
units perform computations. The RBFNetwork was chosen since it learned
faster than the multilayer perceptron network on a subset of the training data.
The other function family member included as a candidate base learner is Lo-
gistic, which is an implementation of Multinomial Logistic Regression with a
ridge estimator (le Cessie and van Houwelingen 1992). Logistic regressionis
also known as Maximum Entropy classification.

8.5 Parameter settings

Each machine learning method has its own parameters that need to be tweaked
to obtain the best result with respect to the task and data at hand. The im-
portance of paying attention to parameter settings is emphasized by Daele-
mans and Hoste (2002), who raise general concerns regarding the reliability
of reported machine learning results. Their hypothesis is that the differences
in accuracy that can be observed between different machine learning methods
applied to some problem is lower than the variability in accuracy originating
from interactions between data selection, data representation, and algorithm
parameter settings within one and the same machine learning algorithm. To test
their hypothesis, Dealemans and Hoste employ memory-based learning and
decision tree learning for three tasks – word sense disambiguation, diminutive
suffixes, and part-of-speech tagging – and analyze the influence of algorithm
parameter optimization, as well as the interaction between feature selection
and parameter optimization. Based on the experiments, Daelemans and Hoste
(2002) claim to confirm their hypothesis that the accuracy differences between
different base learners will, in general, be lower than the accuracy range re-
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sulting from interactions between parameter settings and selection information
sources as used by a single base learner.

Although the results reported by Daelemans and Hoste (2002) are on tasks
other than named entity recognition, there is no reason not to believe that the
interaction of parameter settings, data representation and base learners isas
important to the present experiment. Thus, an informed variation of algorithm
parameters is conducted for each base learner. The parameter settings for the
respective learning scheme are first tested using a subset of the entire training
data. The influence of changes to parameter values on the classifier results is
quicker to assess on small data sets, albeit it is admittedly also more prone
to issues such as overfitting of the learned model with respect to the data at
hand. Once the identification of parameters and the approximate parameter
value range are decided, a classifier set-up for each such combination isde-
fined in conjunction with the full data sets. Appendix A, section A.1 contains
listings, per base learner, of all parameters and parameter values used inthis
experiment. Note that search conducted in parameter space is by no means
exhaustive, but should rather be considered explorative.

8.6 Token classification results

All nine machine learners in the right column in table 8.4 were run on each one
of the seven data sets representing the context sizes introduced in section8.2,
using various parameter settings specific to the individual learning methods
as described in section 8.5. In addition, the two feature selection techniques
introduced in section 8.3 were used with each machine learner on the data set
representing the largest context size. In total 216 experiments were run, using
10-fold cross-validation for calculating the results.

Note that the results reported in this section are for the classification of
single tokens as defined in section 8.1, not for recognizing entire multi-token
names. The reason why the token classification task is at all conducted, instead
of directly investigating the multi-token named entity recognition task, has to
do with the way the task is re-casted from a 7-class task, to a 15-class task as
described in section 8.2. Weka supports the execution and evaluation of classi-
fication of single instances. Due to the re-casting of the initial problem, from
multi-token names, into single-token name parts, each token, not each name,
is considered a separate instance in Weka. Thus, the re-casted problemis eval-
uated in terms of tokens, and it is assumed that the base learner configuration
that performs the best on the single-token classification task, is also the one
yielding the best results in the multi-token named entity recognition task. The
latter is reported and elaborated on in section 8.7.
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ABBREVIATION EXPLANATION

Ctx The context in which each token in the input is represented. Possible
values areintr for intrinsic, andc0 - c5where the number indicates the
size of the context, andc5-fswhich denotes a context of size 5 which
has been reduced by means of one of the automatic feature selection
methods.

Train Normalized CPU time in seconds for training a classifier.
Test Normalized CPU time in seconds for testing a classifier.
PC The percent correctly classified tokens.
Prec The precision, as defined in Equation 2.
Rec The recall, as defined in Equation 3.
F The F-score, as defined in Equation 4.
NBUd NaiveBayesUpdateable
NB NaiveBayes
REPT REPTree
CfsSE Correlation-based feature-subset selection.
ConsSE Consistency-based feature-subset selection.

Table 8.5: Legend to reading the results presented in tables 8.6, 8.7, 8.8, and 8.9.

The result tables included in this part, tables 8.6, 8.7, 8.8, and 8.9, contain
only the classifiers learned by the best combination of base learner, parameter
settings, and data representation for each of the learners in the right column
in table 8.4.9 That is, the results are only reported for one instance of, for ex-
ample, the IBk nearest neighbor learner, although several base learner config-
urations were explored. The base learner configurations reported in each table
are not necessarily the same. For instance, the IBk nearest neighbor reported
as the fastest IBk to learn, is not learned using the same learner configuration
as the one that is fastest to apply, or the one that produces the most accurate
classifications. A combination of the results in terms of learning time, time re-
quired to test, and accuracy is available in table 8.9, which the most important
table reporting the results of the token classification task. Recall, precision,
and F-score are also included in the result listings, although it was found that
the obtained results varied too little to be of any practical use; instead, the
percentage of correctly classified tokens is compared between each classifier.
Table 8.5 serves as a legend to reading the parts of the result tables that have
been abbreviated.

9The combination of base learner, parameter settings, and data representation is referred to
asbase learner configurationor learner configuration.
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8.6.1 A note on measuring time across machines

The results of the single-token classification task reported in sections 8.6.2,
8.6.3, 8.6.4, and 8.6.5 include the CPU time required to train and test each base
learner configuration. The experiments were run on several different comput-
ers. Generally, it is not possible to accurately and with certainty measure exact
execution times across different computers. What is important in the results
reported is not the exact time it took to train, or test, a particular learner, but
rather the relative rank order implied by the training and testing time. To obtain
this relative order, the measured times were normalized with respect to each
computer used. The factor for normalizing the times was obtained by running
the same experiment on all machines, and then compare the resulting times
obtained as part of each result. That way, each computer could be assigned
a time normalization factor, which was subsequently used to re-calculate the
training and testing times obtained in all experiments, on all machines. The
times reported in the results are normalized.

8.6.2 Time to train

This section focuses on the time required to train each base learner configura-
tion. As anticipated, the list of machine learning methods presented in table 8.6
requiring the least time to train on the training part of the MUC-7 data has the
incremental learning methods in the top positions. The IBk nearest neighbor
classifier is by far the fastest to learn, which is due to the fact that it does not re-
ally learn, but merely adds data as it goes. NaiveBayesUpdateable also hoards
data as it becomes available, but it still is slower than the nearest neighbor ap-
proach. Incremental learning, or lazy learning, are fast to learn, butrequires
more time to classify unseen data, as will be evident in section 8.6.3.

Interestingly enough, the NaiveBayes learner is not all that much slower
than the incremental Naı̈ve Bayesian learner, a fact which might invalidate the
inclusion of the latter, depending on its performance along the other two axes;
time required to apply to unseen data, and accuracy.

In fourth place, the REPTree decision tree learner performs closer to thetop
three learners, than it does the Logistic and J48 learners, which are in fifth and
sixth place, respectively. The REPTree learner requires approximatelydouble
the amount of time required by the Naı̈ve Bayesian learners, but only one tenth
of the time required by the J48 decision tree learner. Then follows a range of
learning methods that have been invoked after a correlation-based feature se-
lection method has been applied; what is worth noticing here is that some of
the machine learning methods are faster learners if the feature space has been
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CLASSIFIER CTX TRAIN TEST PC PREC REC F

IBk intr 0.13 709.80 96.49 0.98 0.99 0.99
NBUd intr 9.30 5.28 69.66 0.99 0.73 0.84
NB intr 11.75 18.80 91.18 0.98 0.95 0.97
REPT intr 20.01 0.02 96.15 0.98 0.99 0.99
Logistic intr 145.69 0.38 92.60 0.97 0.98 0.97
J48 intr 180.85 0.08 96.72 0.98 0.99 0.99
CfsSE IBk c5-fs 284.92 340.04 97.17 0.99 0.99 0.99
CfsSE NBUd c5-fs 360.75 1.67 85.34 0.99 0.89 0.94
CfsSE J48 c5-fs 367.69 0.11 97.28 0.99 0.99 0.99
CfsSE Logistic c5-fs 408.81 0.38 91.81 0.93 0.99 0.96
CfsSE NB c5-fs 435.46 0.17 93.13 0.99 0.95 0.97
CfsSE REPT c5-fs 446.37 0.12 97.32 0.99 0.99 0.99
CfsSE PART c5-fs 504.79 0.23 97.19 0.99 0.99 0.99
RBF c1 1040.80 6.88 90.56 0.94 0.98 0.96
PART c0 1295.23 0.3 97.43 0.99 0.99 0.99
CfsSE Jrip c5-fs 1858.39 0.19 96.33 0.97 0.99 0.98
Jrip intr 4154.58 0.13 97.97 0.98 0.99 0.99
ConsSE IBk c5-fs 5613.11 167.30 96.36 0.98 0.99 0.98
ConsSE J48 c5-fs 6040.74 0.11 96.67 0.98 0.99 0.98
ConsSE Logistic c5-fs 6062.71 0.38 88.80 0.89 1.00 0.94
ConsSE NBUd c5-fs 6178.32 0.37 86.21 0.91 0.96 0.93
ConsSE PART c5-fs 6434.96 0.33 96.39 0.98 0.99 0.98
ConsSE NB c5-fs 6654.77 0.15 95.47 0.96 0.99 0.98
CfsSE RBF c5-fs 7499.59 1.41 91.79 0.92 1.00 0.96
ConsSE REPT c5-fs 7913.13 0.12 96.82 0.98 0.99 0.99
ConsSE Jrip c5-fs 9056.25 0.25 94.82 0.96 0.99 0.97
ConsSE RBF c5-fs 18383.74 1.01 90.01 0.91 0.99 0.95

Table 8.6: Classifiers ordered according to the time required to train on data.

reduced prior to the learning phase. For instance, the PART method learns
faster when correlation-based feature selection has been applied to a data rep-
resentation containing information about five tokens to the left, and five tokens
to the right, than it does when applied to a zero context. In this experiment,
the correlation-based feature selection method outperforms consistency-based
feature selection with respect to training time in all cases. However, neither
feature selection method contributes to reducing the learning times in man-
ners that would make the resulting representations alternatives to the intrinsic
instance representation. Overall, and not surprisingly, the classifiers all learn
faster on the data represented by fewer features. The intrinsic representations
are preferred by the top six base learners, followed by seven base learner con-
figurations utilizing reduced feature sets.

Refer to section A.2 in appendix A for a complete listing of the parameters
used with each base learner listed in table 8.6.
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CLASSIFIER CTX TRAIN TEST PC PREC REC F

REPT intr 44.96 0.02 96.78 0.98 0.99 0.99
J48 c0 184.87 0.05 97.44 0.99 0.99 0.99
ConsSE J48 c5-fs 6040.74 0.11 96.67 0.98 0.99 0.98
CfsSE J48 c5-fs 367.69 0.11 97.28 0.99 0.99 0.99
Jrip intr 4763.83 0.12 97.02 0.98 0.99 0.99
CfsSE REPT c5-fs 449.57 0.12 96.95 0.98 0.99 0.99
ConsSE REPT c5-fs 7913.13 0.12 96.82 0.98 0.99 0.99
ConsSE NB c5-fs 6654.77 0.15 95.47 0.96 0.99 0.98
CfsSE Jrip c5-fs 1879.65 0.17 96.11 0.97 0.99 0.98
CfsSE NB c5-fs 435.46 0.17 93.13 0.99 0.95 0.97
ConsSE Jrip c5-fs 9117.73 0.22 94.69 0.96 0.99 0.97
CfsSE PART c5-fs 504.79 0.23 97.19 0.99 0.99 0.99
ConsSE PART c5-fs 7475.34 0.27 96.18 0.98 0.99 0.98
PART c0 1295.23 0.30 97.43 0.99 0.99 0.99
Logistic c0 282.21 0.37 93.80 0.97 0.98 0.98
ConsSE NBUd c5-fs 6178.32 0.37 86.21 0.91 0.96 0.93
CfsSE Logistic c5-fs 549.89 0.38 91.79 0.93 0.99 0.96
ConsSE Logistic c5-fs 6062.71 0.38 88.80 0.89 1.00 0.94
NB intr 20.99 0.61 92.15 0.99 0.94 0.96
ConsSE RBF c5-fs 18383.74 1.01 90.01 0.91 0.99 0.95
CfsSE RBF c5-fs 7499.59 1.41 91.79 0.92 1.00 0.96
CfsSE NBUd c5-fs 360.75 1.67 85.34 0.99 0.89 0.94
RBF intr 1249.56 2.81 91.30 0.96 0.98 0.97
NBUd intr 9.30 5.28 69.66 0.99 0.73 0.84
CfsSE IBk c5-fs 292.46 139.57 96.90 0.99 0.99 0.99
ConsSE IBk c5-fs 5613.11 167.30 96.36 0.98 0.99 0.98
IBk intr 1.99 263.18 96.41 0.98 0.99 0.99

Table 8.7: Classifiers ordered according to the time required to apply to data.

8.6.3 Time to test

In terms of time required to apply a classifier to the test portion of the data,
table 8.7 reveals that the deviation in time between consecutive classifiers is,
in the majority of the cases, not that big. The tail of the list, however, con-
tains three base learner configurations that stand out in a bad way; compared
to any of the other machine learning methods under scrutiny, the memory-
based learner is a poor performer when it comes to time required to process
the test data. The NaiveBayesUpdateable performs well, compared to the IBk.
On the other hand, the incremental Naı̈ve Bayesian learner is an order of mag-
nitude slower than its non-incremental sibling, the NaiveBayes learner. Inef-
fect, this means that unless the NaiveBayesUpdateable outperforms the Naive-
Bayes learner significantly in the third way of comparison – classifier accuracy
– NaiveBayesUpdateable is of no further interest to this experiment.



8.6 Token classification results109

The decision tree learners are approximately equally fast, with the REPTree
learner in the first position, slightly ahead of the J48. As in the comparison of
learning times, the use of a smaller context makes for a faster learner. What
is interesting is that the J48 learner is faster using the zero context, than the
smaller intrinsic ditto.

Contrary to the case of training the classifiers (section 8.6.2), it is not at
all clear which of the two feature selection methods performs the best; the
correlation-based feature selection method is better in five of nine cases. But,
again, none of the feature selection methods contribute to faster learning.

Refer to section A.3 in appendix A for a complete listing of the parameters
used with each base learner listed in table 8.7.

8.6.4 Accuracy

Table 8.8 describes the accuracy of the classifiers. What is striking in the table
is that, overall, classifiers perform better when trained on data represented us-
ing narrow contexts. The best performer is the Jrip rule learner when trained
on intrinsic token representations, followed by the other rule learning scheme
employed, PART. Base learner configurations involving the two decision tree
learners occupy the third and fourth place.

Most of the classifiers manage to classify more than 95 percent of the tokens
in the test portion of the data correctly. Four base learner configurationsscored
below 90 percent; the NaiveBayesUpdateable with and without automatic fea-
ture selection, and the Logistic Regression learner with consistency-based fea-
ture selection. The NaiveBayes learner performs considerably better,and the
use of the incremental Bayesian learning is therefore off the chart. Although
the other incremental learning scheme, IBk, does not perform badly compared
to the other methods, it is too far behind to be a top candidate for further ex-
ploration (as will be evident in the combination of results in section 8.6.5).

The correlation-based feature selection method is better than the consisten-
cy-based feature selection method in seven of nine cases. As in the previous
two comparisons in sections 8.6.2 and 8.6.3, the automatic means to reduce the
widest context do not lend themselves to results in the top positions.

Refer to section A.4 in appendix A for a complete listing of the parameters
used with each base learner listed in table 8.8.
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CLASSIFIER CTX TRAIN TEST PC PREC REC F

Jrip intr 4154.58 0.13 97.97 0.98 0.99 0.99
PART c1 12290.66 1.06 97.69 0.99 0.99 0.99
REPT c0 122.72 0.11 97.68 0.99 0.99 0.99
J48 c0 197.35 0.07 97.68 0.99 0.99 0.99
CfsSE REPT c5-fs 446.37 0.12 97.32 0.99 0.99 0.99
CfsSE J48 c5-fs 367.69 0.11 97.28 0.99 0.99 0.99
CfsSE PART c5-fs 504.79 0.23 97.19 0.99 0.99 0.99
CfsSE IBk c5-fs 284.92 340.04 97.17 0.99 0.99 0.99
IBk c0 4.20 305.02 97.12 0.99 0.99 0.99
ConsSE REPT c5-fs 7913.13 0.12 96.82 0.98 0.99 0.99
ConsSE J48 c5-fs 6540.04 0.12 96.69 0.98 0.99 0.98
ConsSE PART c5-fs 6434.96 0.33 96.39 0.98 0.99 0.98
ConsSE IBk c5-fs 5613.11 167.30 96.36 0.98 0.99 0.98
CfsSE Jrip c5-fs 3018.82 0.20 96.34 0.98 0.99 0.98
Logistic c2 1802.13 0.59 95.90 0.98 0.99 0.99
ConsSE NB c5-fs 6654.77 0.15 95.47 0.96 0.99 0.98
ConsSE Jrip c5-fs 9939.44 0.22 94.91 0.96 0.99 0.97
CfsSE NB c5-fs 435.46 0.17 93.13 0.99 0.95 0.97
NB c0 22.22 0.65 93.05 0.99 0.94 0.97
CfsSE Logistic c5-fs 408.81 0.38 91.81 0.93 0.99 0.96
CfsSE RBF c5-fs 7499.59 1.41 91.79 0.92 1.00 0.96
RBF c0 1448.02 3.05 91.43 0.96 0.98 0.97
ConsSE RBF c5-fs 18383.74 1.01 90.01 0.91 0.99 0.95
ConsSE Logistic c5-fs 6062.71 0.38 88.80 0.89 1.00 0.94
ConsSE NBUd c5-fs 6178.32 0.37 86.21 0.91 0.96 0.93
CfsSE NBUd c5-fs 360.75 1.67 85.34 0.99 0.89 0.94
NBUd c0 10.04 5.71 81.28 0.99 0.85 0.92

Table 8.8: Classifiers ordered according to number of precent correctly classified
tokens in the input data.

8.6.5 Combining times and accuracy

The results from the three complete10 listings of the training time, the testing
time, and the accuracy were combined into one list using squared rank sum.
The combined results are available in table 8.9. The squared rank sum for an
item in the ranked result lists is calculated asR2

1 + R2
2 + R2

3, whereRi is the
rank of the item in listi.

The results in table 8.9 reveal that the task of as quickly and correct as
possible decide whether a single token is part of name can successfully be
approached using decision trees. The two decision tree learners used,REP-

10Each complete listing contains all 216 experiments conducted, ordered according to the
respective field of comparison, not only the portions listed in the tables shown in this section.
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CLASSIFIER CTX TRAIN TEST PC PREC REC F

REPT c0 122,31 0,10 97,68 0,99 0,99 0,99
J48 c0 184,87 0,05 97,44 0,99 0,99 0,99
CfsSE J48 c5-fs 367,69 0,11 97,28 0,99 0,99 0,99
CfsSE REPT c5-fs 446,37 0,12 97,32 0,99 0,99 0,99
Jrip intr 4154,58 0,13 97,97 0,98 0,99 0,99
CfsSE PART c5-fs 504,79 0,23 97,19 0,99 0,99 0,99
PART c0 1295,23 0,30 97,43 0,99 0,99 0,99
ConsSE J48 c5-fs 6040,74 0,11 96,67 0,98 0,99 0,98
CfsSE Jrip c5-fs 1858,39 0,19 96,33 0,97 0,99 0,98
CfsSE NB c5-fs 435,46 0,17 93,13 0,99 0,95 0,97
ConsSE REPT c5-fs 7913,13 0,12 96,82 0,98 0,99 0,99
Logistic c0 282,21 0,37 93,80 0,97 0,98 0,98
IBk c0 4,20 305,02 97,12 0,99 0,99 0,99
CfsSE IBk c5-fs 284,92 340,04 97,17 0,99 0,99 0,99
NB c0 22,22 0,65 93,05 0,99 0,94 0,97
CfsSE Logistic c5-fs 408,81 0,38 91,81 0,93 0,99 0,96
ConsSE PART c5-fs 6434,96 0,33 96,39 0,98 0,99 0,98
ConsSE NB c5-fs 6654,77 0,15 95,47 0,96 0,99 0,98
ConsSE Jrip c5-fs 9117,73 0,22 94,69 0,96 0,99 0,97
NBUd c0 10,04 5,71 81,28 0,99 0,85 0,92
CfsSE NBUd c5-fs 360,75 1,67 85,34 0,99 0,89 0,94
RBF intr 1249,56 2,81 91,30 0,96 0,98 0,97
ConsSE IBk c5-fs 5613,11 167,3 96,36 0,98 0,99 0,98
ConsSE Logistic c5-fs 6062,71 0,38 88,80 0,89 1,00 0,94
ConsSE NBUd c5-fs 6178,32 0,37 86,21 0,91 0,96 0,93
CfsSE RBF c5-fs 7499,59 1,41 91,79 0,92 1,00 0,96
ConsSE RBF c5-fs 18383,74 1,01 90,01 0,91 0,99 0,95

Table 8.9: Classifiers ordered according to squared rank sum.

Tree and J48, occupy the four top-most positions in the results list. While the
REPTree learner is slightly better than the J48 when it comes to classification
accuracy, it is slightly worse in terms of time required to be applied to test data.

The combined characteristics of IBk, which is the fastest to learn (table 8.6),
but require significantly more time to apply (table 8.7), is made clear by using
the squared rank sum approach. The same goes for the application of theau-
tomatic feature selection methods. No learner configuration employing feature
selection to reduce the dimensionality of the data representation made it high
enough to be considered as an alternative worth further exploration.

Given the representational scheme, learning in small contexts apparently is
sufficient to be able to quickly and accurately classify single tokens as belong-
ing to one of the target classes. A complete listing of the parameters used for
the base learners in table 8.9 are available in section A.5 in appendix A.
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1. Let ti , ti+1, . . . , tn be a sequence of tokensT.

2. LetL be a set of labels corresponding to the 15 target classes listed in Table 8.1.

3. LetC be a classifier such thatC: t→ l , andt ∈ T, l ∈ L.

4. ∀t ∈ T, applyC and obtain a sequenceSconsisting of pairs< t, l >.

5. Assign labell to each longest sub-sequences∈ S in which consecutive pairs,
< ti , l j > < ti+n, lk >, share the same labell = l j = lk.

Figure 8.1: Using a single token classifier for recognizing and categorizing multi-
token names.

8.7 Named entity recognition results

Following the problem formulation in section 8.1, the results reported in sec-
tion 8.6 reflect how the base learners behave when faced with the task of clas-
sifying individual tokens. As explained earlier, names often consists of several
tokens, and as interesting as they may be, the results reached in a single-token
classification setting are not particularly useful in an active learning scenario.
That is, unless they are transferred to a multi-token setting. The application
of single-token classification to recognizing multi-token names is described in
figure 8.1. Essentially, a classifier capable of predicting the class label ofa
given token is applied to all tokens in the text in which names are sought for.
The labels are then utilized to group together sub-sequences of tokens withthe
same label, and re-label the sub-sequences accordingly.

8.7.1 Evaluation the MUC way

Since names are often more than a single token in length, the method used for
evaluating single-token classification is not applicable to named entity recog-
nition as it stands. In MUC, shades of correctness other than black and white
were used; a predicted name can be awarded a score indicating that it is half-
right, in some sense. The Message Understanding Conference ScoringSoft-
ware User’s Manual (Voorhees 2001) describes how the performance of a
named entity recognizer used in MUC is to be computed. There are six types of
possible matches between a predicted named entity and a named entity given
as answer key by mark-up in the corpus:
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• COR (correct). The key and predicted values agree, both in terms of
tokens included (spread) and in type of name.

• INC (incorrect). The key and predicted values disagree. Not spread, nor
type match.

• PAR (partially correct). The predicted value and the key are not iden-
tical, but partial credit should still be given. For instance, if a predicted
value is of the same type as the key value, but only partially overlapping
the key.

• MIS (missing). There was a key, but no predicted value.

• SPU(spurious). There was a predicted value, but no key.

• NON (noncommittal). The alignment does not contribute to scoring.

Based on the above listed six different types of matches possible, there are
several additional values calculated for the final scoring.

• POS(possible). The number of items in the key which contribute to the
final score.

POS= COR+ INC+PAR+MIS (14)

• ACT (actual). The number of items in the predicted response.

ACT = COR+ INC+PAR+SPU (15)

• REC (recall). A measure of how large a degree of key items were pre-
dicted, cf. equation 3.

REC=
COR+(0.5×PAR)

POS
(16)

• PRE (precision). A measure of how large a degree of predicted items
are actually in the key, cf. equation 2.

PRE=
COR+(0.5×PAR)

ACT
(17)

• F-scorecf. equation 4.

F-score=
(β 2 +1.0)×PRE+REC

(β 2×PRE)+REC
(18)

whereβ is set to 1.
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A class for evaluating named entity recognition according to the specification
in The MUC Scoring Software User’s Manual was implemented in Kaba and
used for evaluating the performance throughout the remainder of the disserta-
tion.

8.7.2 A baseline for named entity recognition

Equipped with a way of applying single-token classification for recognizing
multi-token names, as well as with means to evaluate such an application, the
results of using the best base learner configuration from section 8.6.5 for name
recognition on the MUC-7 corpus can be presented.

Table 8.10 lists the precision, recall, and F-score for the overall task, aswell
as for ENAMEX, TIMEX, and NUMEX when using the best learner configu-
ration from section 8.6.5; the REPTree decision tree learner. The results are the
average of five runs, in each of which the REPTree learner was trainedon 90
randomly drawn documents from the corpus, and evaluated on the remaining
10 documents.

RECALL PRECISION F-SCORE

ENAMEX 0.796 0.808 0.802
TIMEX 0.766 0.784 0.775
NUMEX 0.674 0.916 0.747
ALL 0.789 0.804 0.796

Table 8.10: Baseline named entity recognition results.

A more interesting aspect of learning is how the base learner performs as
more data is made available, that is, the learning curve of the learner. Learning
curves are commonly used to illustrate the progress of active learning (sec-
tion 4.9). A baseline learning curve is crucial for judging the success of the
experiments on active learning for document selection conducted in chapter 9.

Figures 8.2, 8.3, and 8.4 on pages 116–117 show the baseline learning curve
obtained by using the REPTree learner on the MUC corpus; the curves depict
recall, precision, and F-score for the ENAMEX, TIMEX, and NUMEX tasks,
as well as for their combination. The curve illustrating the learning rate in
terms of F-score of the REPTree learner on the combined task in figure 8.4 is
the one which is primarily used as a reference in the experiments in chapter 9.
As can be seen from the figures, the performance of the base learner does not
increase monotonically with the amount of training data. This is most evident
for the precision of the classifier on the NUMEX class of names depicted in
figure 8.3. The reason for the fluctuations is to be sought for in the distribution
of the names. Generally, while the amount of training data available to the
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base learner is small, the variance (fluctuation) in its performance is large. On
average, there are only 1.4 occurrences of NUMEX per document, as shown in
table 7.1. Since the NUMEX class is so sparsely distributed, the effect of each
NUMEX training example is more explicit when illustrated by means of the
learning curve, than is the effect of each ENAMEX instance. On average, there
are 49.58 occurrences of ENAMEX per document (table 7.1), which means
that it is necessary to use 35 documents to obtain the same amount of NUMEX
training examples, that is available in one document for the ENAMEX class.

A learning curve is obtained by first randomly selecting 10 documents from
the MUC corpus to use as a held-out test set. The remaining 90 documents
are then iteratively divided into sub-corpora. Initially at iterationi = 1 a single
document is randomly drawn, without replacement, from the remainingn= 90
documents. The document is stored as a separate sub-corpus of size 1 docu-
ment. In the next round, that isi = i +1, another document is randomly drawn,
without replacement, from the remainingn = n−1 documents. The document
is stored together with the previously selected documents in a new sub-corpus
of sizei. This is repeated until there are no documents remaining in the origi-
nal corpus. At this point, there are 90 sub-corpora of sizes 1 to 90 documents
for training, and one for testing. The REPTree base learner is then applied to
induce a classifier for each sub-corpus. A curve is then calculated by evaluat-
ing each classifier on the test set. This is repeated five times, and the average
is shown in figures 8.2, 8.3, and 8.4.
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Figure 8.2: A baseline learning curve depicting the recall for the ENAMEX,
TIMEX, and NUMEX tasks, as well as their combined recall.
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9 ACTIVE SELECTION

OF DOCUMENTS

This chapter deals with emerging issue E–3 concerning active learning fordoc-
ument selection as outlined in section 6.6. The issue pertains to whether it is
possible to actively learn to select documents to mark up with named entities.
In particular, the following questions are addressed:

• Which active learning paradigms are applicable to document selection
for named entity recognition?

• Which uncertainty, or disagreement metrics are suitable?

As pointed out in the description of the BootMark method in chapter 6, the
applicability of the method hinges on the ability to distinguish one document
as more informative than another by means of information contained at sub-
document levels. Distinguishing between documents based on names is a multi-
classand multi-instance task. Selecting a document can be considered as se-
lecting a fixed batch of, on average, more than 900 tokens containing approx-
imately 63 names with an average length of around 1.8 tokens (table 7.1).
Considering these facts along with the characteristics of the baseline learning
curve in figure 8.4, which proves learning from randomly selected documents
to yield a rather steep curve which flattens out after only about 20 documents,
it is expected to be hard to beat randomly selecting documents from which to
learn by means of active learning.

9.1 Active learning experiment walk-through

The active learning experiments conducted are all very similar to the proto-
typical active learning algorithm outlined in figure 4.1, but the experiments
differ in one significant respect from the algorithm; where the algorithm states
that the active learner is to ask the human oracle to classify instances, the ap-
proach taken in the experiments is to simulate the oracle by substituting the
unlabeled instances with labeled instances taken from an annotated reference
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corpus. What follows is a walk-through of the algorithm as used in the experi-
ments.

1. The input to an experiment is a labeled corpusD containingk docu-
ments, and a base learner configurationB.

2. Select a test setT containingn documents from the labeled corpusD.

3. Select a seed setS containingm documents fromD. At this point, D
containsr = k−n−mdocuments.

4. UseB onS to obtain token classifierC.

5. Apply C to each documentd ∈ D in order to mark up the names. The
original name annotations inD are not affected byC.

6. Based on thepredictednames, calculate the informativenessI of each
d ∈ D according to some uncertainty metric if the experiment concerns
query by uncertainty, or disagreement metric if it is a query by commit-
tee setting.

7. Select the most informatived ∈ D according toI , obtainingdI .

8. Simulate an oracle annotatingdI by moving the correctly annotateddI

from D to S. D now containsr = r − 1 documents. This is where the
experiment set-up differs from the prototypical active learning algorithm
in figure 4.1.

9. Apply and evaluateC on T, dI , andS in order to collect data for further
analysis. The evaluation is made with respect to named entity recogni-
tion as outlined in section 8.7.1.

10. Repeat steps 4 to 9 untilr = 0, that is,D is empty.

Essentially, the output of an experiment is the data collected in step 9. Although
a classifier is trained, it is not saved for future use.

9.2 Query by uncertainty

The primary purpose of experimenting with query by uncertainty, introduced
in section 4.1, is to see whether active learning with a single base learner can
beat the passive learning baseline from chapter 8, that is, produce a steeper
learning curve, reaching higher F-score with fewer documents in the training
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set. Query by uncertainty is attractive since it, if successful, provides anap-
proach to selecting documents which is computationally cheaper than query
by committee, which is explored in section 9.3.

9.2.1 Candidate uncertainty quantification metrics

The main problem in this experiment is to identify ways of quantifying the
informativeness, or uncertainty, of a document relative to the other documents
available. The reason why this is needed is to be able to select the document
that, in some sense, confuses the classifier the most. Once correctly marked-up
for names and added to the training set, the document is assumed to contribute
to the ability of the re-trained classifier to recognize names in previously un-
seen documents in a way that no other document would have done if selected.

When given an instance to classify, a classifier in Weka can be made to
produce as output a probability distribution over the class labels. In the case
of token classification as described in chapter 8, such a distribution consistsof
15 numbers, each of which indicates the estimated probability that the current
instance is of a particular class. One way of understanding the probability dis-
tribution produced for a given instance is as a measure of the uncertainty that
the classifier has in the classes for the corresponding token. Since the subject
matter of the active learning experiment is not individual tokens, but entire
documents, the probability distributions for each token in a document have to
be combined in some way to reflect the uncertainty that the classifier has in the
document as a whole. The remainder of this section introduces 15 metrics for
quantifying the uncertainty of documents. The metrics are used in steps 6 and
7 in the active learning experiment set-up outlined in section 9.1.

The candidate metrics used for selecting documents in the query by uncer-
tainty setting described here can be divided into five groups, based on average
probability, maximal difference of probabilities, minimal probability, standard
deviation of probabilities, and log probabilities (entropy). All uncertainty met-
rics that make use of the class probabilities obtained from the classifier use
only the probability of the most likely class label assigned to each token.

When comparing two documents according to any of the average proba-
bility-based uncertainty metrics, the document assigned the smallest value is
considered more informative. The metrics are defined as follows:

Avg The average token probability in a document is used as its uncertainty
score.

Avgno The uncertainty of a document is represented as the average of the
probabilities of the tokens that have not been assigned the class label
OUT.
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Avgsd A combination of the average token probability Avg for a document,
and the standard deviationsd of the probabilities assigned to the tokens
in a document such that Avgsd= Avg× (1− sd) is used as uncertainty
measure.

Avgsdno As Avgsd, but the average probability of the tokens in a document is
calculated the same way as for Avgno.

Contrary to the average probability-based metrics, the ones based on difference
in probability should be interpreted such that a document assigned a larger
value is more informative than one assigned a smaller value. The probability
difference-based metrics are defined as:

Diff The uncertainty of a document is represented as the difference between
the largest class label probability assigned to a token in the document,
and the smallest value assigned to a token in the same document.

Diffno Analogously to Avgno described above, Diffno is defined as the differ-
ence between the largest and smallest probability assigned to tokens in
the same document, without considering tokens that have been predicted
as belonging to the class representing non-names, that is, with class label
OUT.

Sdanddiffno A combination of Diffno and the standard deviationsd for the
probabilities assigned to the tokens in a document, such that

Sdanddiffno= Diffno×sd (19)

is used for representing the uncertainty of the document.

Diffbitot Diff weighted according to the ratio of the number of tokens that are
assigned class labels indicating that they are at the beginning (B) or in
(I) a name, to the total number of tokens in the document such that

Diffbitot = Diff ×
|IB|
|IOB|

(20)

Diffbitotno Same as Diffbitot but Diffno is used instead of Diff.

Just as with the metrics based on average probabilities, selecting documents
using the minimal probability-based metrics is done under the assumption
that a lower score indicates a more informative document. The two minimal
probability-based metrics used are defined as follows:
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Minconf The uncertainty of a document is represented by the smallest proba-
bility assigned to a token in it.

Minconfno The uncertainty of a document is represented by the smallest prob-
ability assigned to a token that is not predicted as a non-name.

The metrics based on standard deviation of the probabilities assigned to the
tokens in a document rely on the assumption that a document with a larger
spread in probabilities is a document more informative than one with a smaller
spread. The metrics are defined as:

Sd The standard deviation of the probabilities assigned to the tokens is used
for representing the uncertainty of the document.

Sdno The standard deviation of the probabilities assigned to all name part
tokens is used for representing the uncertainty of the document.

The log probability-based metrics resemble the Shannon entropy as definedin
equation 5. A larger log probability-based value indicates a higher uncertainty.
The two metrics used are defined as:

Logprob The uncertainty of a document is calculated as

Logprob= −
k

∑
i=1

pi log2 pi (21)

wherek is the number of tokens in the document, andpi is the probabil-
ity assigned by the classifier to thei-th token.

Tllogprob The token label log probability is the only metric that does not rely
explicitly on the probability assigned to each token. Instead, Tllogprob
use the relative frequencies of the tokens in a document to compute the
uncertainty. In this sense, Tllogprob is more similar the definition of the
Shannon entropy in equation 5 than is Logprob defined above.

Tllogprob= −
k

∑
i=1

1
|ci |

log2
1
|ci |

(22)

wherek is the number of tokens in the document, and|ci | is the number
of occurrences in the document of the class label predicted for thei-th
token.
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9.2.2 Evaluation of the selection metrics

The evaluation of the uncertainty metrics introduced in the previous section
is performed by running the active learning experiment as it is described in
section 9.1 for all metrics. The experiments are repeated five times for each
metric and thus the resulting curves shown in the figures below are the averages
of five runs. A successful uncertainty metric is one that causes the learning
curve of the base learner to be steeper than, as well as lie above, the baseline
curve. The baseline used is obtained by training a single REPTree base learner
on randomly selected documents, as described in section 8.7.2. The evaluation
of the metrics is run on the full corpus, but constrained to the first 40 iterations;
if the resulting learning curve is not above baseline after 40 documents, it is
deemed not to be of any help to a human annotator. Further, as the constitution
of the seed-set is not the subject matter for these experiments, the seed-set
is simply made up by five randomly selected documents from the annotated
corpus (step three in the walk-through available in section 9.1). The issue of
seed set compilation is explored in chapter 10.

Figure 9.1 shows the results for the average probability-based uncertainty
metrics. As the learning curves for all metrics lie under the baseline curve,
it is evident that using the various forms of average calculation introducedin
section 9.2.1 is not suitable for discriminating between documents to select for
annotation.

Figure 9.2 shows the results for the group of probability difference-based
metrics. Although using the difference between the largest and smallest token
probability results in learning curves that are slightly better than those resulting
from the average probability-based metrics, the curves are still mostly below
the baseline, and thus not of any use.

Figure 9.3 illustrates the results obtained by using query by uncertainty with
the two minimal probability-based uncertainty metrics. The resulting curves
are both approximately matching the baseline, which is a general improve-
ment over the results obtained for the two previous groups of metrics. Still, the
results are not good enough.

Figure 9.4 shows that using the standard deviation of the predicted proba-
bilities as uncertainty metric is not a good idea. The resulting curves are well
inferior to the baseline.

Finally, figure 9.5 illustrates the effect of using the two log probability-
based metrics as means to quantify uncertainty over documents. The curves
for both metrics actually improve on the baseline, and it is hard to settle for a
winner. Although the improvement is obviously small, the results are encour-
aging since they show that it is possible, even in a single learner setting, to
actively select document for named entity recognition.
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Figure 9.1: The performance of query by uncertainty using the average probability-
based document uncertainty metrics.
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Figure 9.2: The performance of query by uncertainty using the probability
difference-based document uncertainty metrics.
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Figure 9.3: The performance of query by uncertainty using the minimal probability-
based document uncertainty metrics.
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Figure 9.4: The performance of query by uncertainty using the probability standard
deviation-based document uncertainty metrics.
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Figure 9.5: The performance of query by uncertainty using the log probability-based
uncertainty selection metrics.

The probabilities delivered by a classifier trained on little data are generally
of little use as they are calculated based on too few observations. Essentially,
in that situation, a classifier can be very certain about the predicted class label
for a token, but still be very wrong in its prediction.

9.3 Query by committee

Query by committee is a multi-classifier approach to active learning, in which
each committee member contributes to the collective decision as to whether a
given instance is more informative than another. Using a decision committee
allows for different uncertainty metrics than the ones described in section 9.2.1.
The uncertainty of a document is quantified as the disagreement between the
members of the decision committee, and the metrics used are therefore referred
to as disagreement metrics.

The query by committee approach to active learning is introduced in sec-
tion 4.2, and the three different ways of assembling a decision committee ex-
plored for the purpose of selecting documents to annotate with named entities
– query by boosting, ActiveDecorate, and Co-testing – are introduced insec-
tions 4.2.1, 4.2.2, and 4.3, respectively.
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Figure 9.6: A comparison of the Decorate, Boosting and single learner baselines.

Utilizing a different scheme – multi-classifier learning instead of single-
classifier ditto – calls for the assessment of additional baselines. Two of the
three committee-based approaches have passive learning counterparts; base-
line learning curves corresponding to Boosting and Decorate are created and
compared to the single learner baseline used in the query by uncertainty set-
ting in figure 9.6. The three ways to create the final classifier in Co-testing,
as described in section 4.3, do not lend themselves to be realized in a passive
learning setting; all three ways require the presence of an active learning com-
ponent. Hence, as it stands, there is no passive learning baseline for Co-testing.

Figure 9.6 reveals the differences between the baselines of the single learner,
Boosting, and Decorate. Each curve is created as described in section 8.7.2.
The Boosting baseline is clearly the best one. For the course of the initial 30
documents, the single learner baseline proves to be better than that for Dec-
orate, while during the remaining 60 documents, the two baselines are inter-
twined in a way that makes it hard to decide on a winner. The Boosting and
Decorate meta learners employ the same base learner configuration as is used
for the single learner baseline, that is, the one deemed the best in chapter 8.
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9.3.1 Candidate disagreement metrics

The disagreement metrics introduced in section 4.4 apply to the level at which
the data is marked-up. In the named entity recognition task, the annotations
are made at the token level. Just as is the case with query by uncertainty, the
disagreement among committee members as calculated at the token level has
to be transferred to apply to the document level.

Most of the disagreement metrics introduced in section 4.4 are defined for
two-class tasks, and most of the metrics are reported to be used in single-
instance settings. Active learning for the purpose of selecting documents in
which to learn to recognize named entities is a multi-class and multi-instance
task, something which has to be accounted for when utilizing existing metrics,
or developing new ones.

Ten disagreement metrics categorized into five groups are used; based on
difference between disagreement values assigned to individual tokens, accu-
mulated log probabilities, minimal margins, vote entropy, and Jensen-Shannon
divergence.

9.3.1.1 Minimal margin-based metrics

The notion of minimal margins, introduced in section 4.4.1, is based on the
observation that an instance that is assigned two different class labels bya de-
cision committee, where the difference between the probabilities with which
each label is assigned is small, constitutes an informative instance. In other
words, the disagreement among the committee members is manifested as a
small difference in probability between the assignments of competing class
labels; the difference is referred to as a margin. The predicted, aggregated,
class label for a document is constructed from the predicted class labels for the
tokens making up the document. A smaller value on a margin-based disagree-
ment metric indicates a more informative document.

Minmarg-diffno The informativeness of a document is calculated as the dif-
ference (margin) between the first and second largest difference between
predicted token probabilities assigned to the document such that the re-
sulting class labels assigned to the document are different.

Minmarg-logprob The informativeness of a document is defined as the dif-
ference between the largest and second largest assigned log probabilities
assigned to the document by the committee members, given that the pre-
dicted class labels for the two classifications are different. The log prob-
abilities are calculated as in the case of Logprob defined in section 9.2.1.
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Minmarg-tllogprob The same as Minmarg-logprob, but the log probabilities
are calculated using relative frequencies instead of the predicted class
probability per token. The token label log probabilities are calculated
the same way as for Tllogprob defined in section 9.2.1.

9.3.1.2 Vote entropy-based metrics

There are two vote entropy-based metrics used in the current experiment.In
vote entropy, the predicted class labels for a token is utilized in order to calcu-
late its informativeness. The vote entropy for an entire document is definedas
the average vote entropy of the tokens making up the document. A larger vote
entropy value indicates a more informative document.

Vote entropy The vote entropy per token is defined as the original vote en-
tropy metric, available in equation 11. The vote entropy for a document
is defined as the average token vote entropy.

Weighted vote entropy Calculated similarly to the original vote entropy met-
ric, but with the weight of the committee members substituted for the
votes. The weighted vote entropy, WVE, is defined as:

WVE = −
1

log w

|c|

∑
i=1

W(ci , t)
w

log
W(ci , t)

w
(23)

wherew is the sum of the weights of all committee members, andW(c, t)
is the sum of the weights of the committee members assigning labelc
to tokent. The weights used in these experiments are assigned to the
individual classifiers by the meta-learner generating them.

9.3.1.3 Maximal difference-based metrics

Maximal difference-based metrics build on the assumption that a document
that is assigned the token probabilities, or token vote entropy, such that thedif-
ference between the largest and smallest values is greater than that of another
document, is more informative than the latter. Maximal difference is imple-
mented using predicted probabilities per token, or the vote entropy assignedto
tokens as defined above.

Maxdiff-no The maximal difference is based on the class probabilities pre-
dicted by all committee members for each token in the document, except
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for the probabilities assigned to tokens whose predicted class is OUT.
The maximal difference is defined as the difference between the largest
predicted class probability for a token, and the smallest predicted class
probability for a different token in the document.

Vote entropy maxdiff The disagreement between committee members con-
cerning the classification of names in a document is defined as the dif-
ference between the highest and lowest vote entropy scores assignedto
the document. Vote entropy is calculated as defined above.

Weighted vote entropy maxdiff The same as vote entropy maxdiff, but the
weighted vote entropy is used instead of the original vote entropy.

9.3.1.4 Accumulated log probabilities

The accumulated log probabilities metric essentially is an adaptation of the
Logprob metric used in query by uncertainty (section 9.2.1). It is also similar
to what Körner and Wrobel (2006) refer to as ordinary entropy.

The accumulated log probability for a document is calculated as the sum of
the log probabilities assigned to a document by each committee member. This
metric does not take advantage of the fact that there are different committee
members all classifying the same document in the same manner as the other
disagreement metrics do. If the members of the committee are considered to
work in parallel when calculating, for instance, the Jensen-Shannon divergence
or vote entropy, the members work more in a serialized way when computing
the accumulated log probability for a document. A larger value on accumulated
log probabilities indicates a more informative document.

9.3.1.5 Jensen-Shannon divergence

The Jensen-Shannon divergence used here is the same as defined in equa-
tion 10. The divergence is first calculated for each token in a document. The
disagreement among the committee members is then realized as the average
Jensen-Shannon divergence per token. A larger value indicates a more infor-
mative document.

9.3.2 Query by boosting

Query by boosting is introduced in section 4.2.1. The boosting method utilized
in the present experiment is called MultiBoost (Webb 2000), which is an ex-
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tension of the AdaBoost algorithm (Freund and Schapire 1996) originallyused
for query by boosting by Abe and Mamitsuka (1998).

MultiBoost is an extension of AdaBoost in that it aims at combining the
variance and bias reduction obtained by AdaBoost with the variance reduction
of Wagging (Bauer and Kohavi 1999). Wagging is a form of bagging, intro-
duced in section 4.2.1, which assigns random weights to the instances in each
training set, instead of randomly sampling from the original data set to form
sub-sets from which to learn. Wagging thus retains the training examples in
the original training set, while bagging creates sub-samples that may contain
duplicates or is missing out on examples. MultiBoost combines AdaBoost and
Wagging by first creating training sets by means of wagging, and then apply
AdaBoost to the sub-sets in order to create decision committees. Webb (2000)
reports results on using MultiBoost with C4.5 as base learner indicating that
MultiBoost produces decision committees with lower error than AdaBoost and
Wagging for a large number of UCI data sets (Asuncion and Newman 2007).

All candidate disagreement metrics described in section 9.3.1 are evaluated
with query by boosting. The evaluation takes place in a manner similar to that
of query by uncertainty in section 9.2.2, with the difference that the number of
iterations is reduced from 40 to 30. The seed-set is made up by five randomly
selected documents. Passive Boosting, as depicted in figure 9.6, is used as
baseline throughout the evaluation of query by boosting.

Compared to the query by uncertainty setting, there is one additional pa-
rameter that is essential to most query by committee settings; the size of the
committee. The impact of the number of committee members is investigated in
section 9.3.5. For the purpose of the evaluation of the candidate metrics with
query by boosting, the number of committee members is set to ten.

Figure 9.7 illustrates the effects of using difference-based disagreement
metrics as means to select documents to annotate. The Maxdiff-no and vote
entropy maxdiff metrics result in approximately the same performance. The
curve resulting from utilizing Weighted vote entropy maxdiff reveals learning
performance which is even better. It is thus discernible that it is possible to uti-
lize active learning for the purpose of selecting documents in a named entity
recognition task. The question now arising is whether the results can be even
more improved by one of the other disagreement metrics.

In figure 9.8 the margin-based disagreement metrics are compared to the
Weighted vote entropy maxdiff metric which egressed as the best of the diff-
erence-based metrics. Körner and Wrobel (2006), who investigated the effects
of different disagreement metrics in multi-class settings as described in sec-
tion 4.4, advocate the use of margin-based metrics. However, any overly strong
expectations are put to shame here since, as illustrated in figure 9.8, the margin-
based metrics utilized for the present multi-class and multi-instance task do not
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Figure 9.7: Query by boosting with difference-based document selection metrics.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  10  20  30

F
-s

co
re

Number of documents in the training set

Baseline
MINMARG DIFFNO

MINMARG LOGPROB
MINMARG TLLOGPROB

WEIGHTED VOTE ENTROPY MAXDIFF
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result in a learning curve improving on the baseline. The reason is likely to be
found in the fact that the disagreement measures used in the margin-basedmet-
rics used here apply to entire documents, and not only individual instances as
stipulated by K̈orner and Wrobel (2006). Any disagreement metric for a piece
of data that is defined as the aggregate of the disagreement on its sub-parts runs
the risk of becoming a rather blunt instrument, a risk that is not at all specific
to the case of margin-based disagreement.

Figure 9.9 shows the application of the vote entropy-based metrics along
with the accumulated log probabilities metric. The Weighted vote entropy
maxdiff curve is included for comparison. Although it is still better during the
first six documents, the Weighted vote entropy maxdiff metric is henceforth
replaced by the Vote entropy metric as being the best metric. The reason is that
the vote entropy learning curve is more parallel to the baseline curve than is
the difference-based curve. In fact, the curve generated by using vote entropy
is very similar to a transposition by the baseline curve of approximately 2%
F-score.

None of the metrics discussed up until now makes use of the predicted class
probability distribution for each token presented by the classifier. The Jensen-
Shannon divergence is a metric which does and figure 9.10 shows the resulting
learning curve. Utilizing the Jensen-Shannon divergence as disagreement met-
ric results in a performance which is on par with the passive Boosting baseline.

9.3.3 ActiveDecorate

As introduced in section 4.2.2, ActiveDecorate is the active learning counter-
part of the Decorate method (Melville and Mooney 2003). The core idea in
Decorate is to generate artificial data in line with the characteristics of the
available training data in order to further extend the amount of data available
for training a committee of classifiers. The disagreement among the classi-
fiers can be measured in much the same way as for query by boosting, with
one important exception; while the members of a boosted committee receive
weights according to how good they are, in some sense, the committee mem-
bers in Decorate all are assigned the same weight. This rules out the use ofthe
disagreement metrics based on weighted vote entropy.

The evaluations of ActiveDecorate with the various disagreement metrics
are conducted the same way as for query by boosting in section 9.3.2; the seed-
set consists of five randomly selected documents, and the committee is com-
prised by ten members. Figure 9.11 shows the results of using the difference-
based metrics to select documents to annotate. Both metrics yield classification
performance approximately in line with the Decorate baseline.
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Figure 9.9: Query by boosting with entropy-based document selection metrics.
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Figure 9.11: ActiveDecorate with difference-based document selectionmetrics.
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Figure 9.12: ActiveDecorate with margin-based document selection metrics.
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The results provided by the three margin-based metrics are depicted in fig-
ure 9.12. Overall, document selection based on the Minmarg-logprob metric
yields classification performance better than the baseline, while the results pro-
duced by the two other margin-based metrics do not.

The best selection metric to use in conjunction with ActiveDecorate is the
Accumulated-logprob metric illustrated in figure 9.13. Quite contrary to query
by boosting, selecting documents based on vote entropy results in performance
of ActiveDecorate inferior to the baseline.

Finally, figure 9.14 shows the classification performance resulting from us-
ing the Jensen-Shannon divergence as selection metric. For the greatercourse
of the 30 documents processed, the classification results are worse than those
of the baseline.

Although the best selection metric used with ActiveDecorate improves on
the corresponding baseline more than the best metric used in conjunction with
query by boosting does, the best query by boosting setting is still to be pre-
ferred over the ActiveDecorate ditto. When comparing the learning curvefor
the vote entropy metric used with query by boosting in figure 9.9, and the
Accumulated-logprob metric used with ActiveDecorate in figure 9.13, it is
clear that the classification performance achieved by the former is superior to
that of the latter. Hence, when considering classification performance, query
by boosting using vote entropy is to be preferred over any of the ActiveDeco-
rate configurations.

ActiveDecorate has been reported successful on tasks available in theUCI
data sets (Asuncion and Newman 2007), such as the classification of diseases
in soybean plants (Melville and Mooney 2004). However, the characteristics
of the data sets and the set-up used by Melville and Mooney (2004), and the
corpus used here differ in one significant respect; the UCI data sets used by
Melville and Mooney are relatively small, containing up to 900 instances. Ac-
cordingly, Melville and Mooney select small batches of examples in each iter-
ation, reportedly up to three instances in size. This should be compared to the
on average 900 tokens (instances) which are selected in each iteration in the
current experiment.

Some of the UCI data sets used by Melville and Mooney (2004) contain
more classes than does the MUC-7 named entity recognition task pursued.
Thus, the number of classes is not likely to be the reason why ActiveDeco-
rate is unsuccessful, relative to query by boosting, for selecting documents for
named entity mark-up.

Melville and Mooney (2004) use two disagreement metrics: margins and
Jensen-Shannon divergence (introduced in sections 4.4.1 and 4.4.6, respec-
tively). Due to the multi-instance nature of the task pursued in this thesis, the
margins metric used by Melville and Mooney does not have a direct corre-
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Figure 9.13: ActiveDecorate with entropy-based document selection metrics.
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tion metric.



9.3 Query by committee139

spondence to any of the disagreement measures introduced in section 9.3.1.
The disagreement metrics closest to the margins metric are Minmarg-diffno,
Minmarg-logprob, and Minmarg-tllogprob for which the active learning re-
sults are reported in figure 9.12; none of the metrics yield results better than
the Decorate baseline. The results reported by Melville and Mooney (2004)
show that actively selecting instances by using the margins metrics results in a
better classification performance than is achieved with Jensen-Shannon diver-
gence.

Melville and Mooney (2004) further report that ActiveDecorate outperform
query by boosting in their experiments, in which they used J48 as base learner
and 15 members in the decision committees. The impact of altering the number
of committee members in ActiveDecorate is examined in section 9.3.5.

Körner and Wrobel (2006) report on successfully using ActiveDecorate for
multi-class problems. Their experiment set-up is similar to that of Melville and
Mooney’s (2004) in that they too select few instances in each round (one, to be
precise), use data sets from the UCI repository, and employ J48 as baselearner.
Thus, it seems reasonable to assume that the failure of the ActiveDecorate
set-up used here is due to the size and constitution of the batch of instances
selected in each active learning iteration. The size of each batch by far exceeds
those used by Melville and Mooney (2004) and Körner and Wrobel (2006). In
addition, the order of the instances, as well as the composition of each batchis
fixed. This, in turn, implies that the distribution of classes within each batch is
severely skewed in favor of the least interesting class, that is OUT, as described
in section 7.1. Considering that the Decorate base learner more often than not
fails in generating as many committee members as requested, as described
in section 9.3.5, the training data at hand seems quite hard to use in order
to produce synthetic data; this observation can be taken as a support of the
claim that the problem with ActiveDecorate is due to the characteristics of the
training data.

9.3.4 Co-testing

The idea in Co-testing is to learn a task by using different feature sets describ-
ing the same data. This way, the problem of having access to too small an
amount of training data is addressed, without the data itself having to be tam-
pered with as is the case of other committee-based methods such as Boosting
and Decorate. Active learning using multiple views of the data is introduced in
section 4.3.
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9.3.4.1 Defining the views

An original assumption of multiple-view learning is that each view has to be
independent of the others and that each view is compatible with the task at
hand. Nevertheless, as described in section 4.3.1 the assumption can be relaxed
to some extent, as long as the base learners involved are able to correctly learn
the task using positive training examples only, which is arguably the case with
named entity recognition.

It is debatable whether there exists a natural split of the feature sets usedin
this experiment to recognize names. Finding two sets of features that are suf-
ficiently independent and sufficiently compatible with the task is a non-trivial
issue. Since the best base learner configuration obtained in chapter 8 utilized
a zero-context (c0) for learning to classify tokens as being part of names, the
current endeavour explores the same context size. The c0 feature set split used
is described in table 9.1. Essentially, the c0 feature set is split so that the fea-
tures in one view pertain to the surface appearance of the target token, while
the other view consists of the remaining features. The features and their cate-
gorizations are available in table 8.2.

In addition to the c0 feature split, a different way of splitting the feature
set is examined by means of using a context size in which the target token is
represented by the token itself in conjunction with the token immediately on
its left, and the token immediately on its right (c1). The c1 feature set split is
made so that the features corresponding to the c0 make up one view, and the
remaining features, representing the context of the target token, make upthe
second view.

There is one earlier approach to Co-testing and named entity recognition.
Becker et al. (2005) report on successfully using Co-testing for recognizing as-
tronomical named entities. The feature set split used by Becker and colleagues
is handcrafted in such a way that each view yields similar results. However,
their feature set split is not applicable to the current experiment since the over-
lap between the features used here (outlined in section 8.2), and those em-
ployed by Becker et al. (2005) are too dissimilar.

Instead of empirically validating that the views produce similar results, the
way the two view classifiers are combined into a final classifier makes use of
a novel weighting scheme as described in the following section. The weight-
ing scheme seeks to adjust the influence of one view classifier over the other
by weighting them according to their performance on the training data. If the
weights assigned to each view are similar, it means that the definitions of the
views are equally expressive relative to the task and training data at hand.
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V IEW 1 V IEW 2
containsDigitsAndDollarSign caordTag
containsDollarSign caseTag
containsPercent classOfPreviousPreviousToken
containsPunctuation classOfPreviousToken
containsWhiteSpace compTag
isAllCaps dependencyFunction
isAllDigits grammaticalFunction
isAllLowerCase isFirstInSentence
isAlphaNumeric isFirstName
isAnyOrAllDigits isLocation
isCompanyDescriptor isNamePart
isDigitsAndAlpha isSalutation
isDigitsAndComma morphTag
isDigitsAndDash numTag
isDigitsAndPeriod partOfSpeech
isDigitsAndSlash surfaceFormAsLemma
isFourDigitNum syntacticTag
isHyphen tenseTag
isInitCaps
isRomanNumber
isSentenceDelimiter
isSingleCapPeriod
isSingleChar
isSingleCharAndPeriod
isSingleLowPeriod
isTwoDigitNum
length
prefix
suffix
surfaceForm

Table 9.1: The split of the c0 features into two views used for Co-testing. View 1
consists of features originating from the surface appearance of the token,
while view 2 contains the features relying on pre-compiled lists, linguis-
tic processing, and the prediction made concerning the class label of the
token preceding the current one.

9.3.4.2 Combining the view classifiers into a final classifier

The question of how the view classifiers are to be combined so as to form
a single, final classifier needs to be addressed. A combined classifier is re-
quired in order to be able to mark up names in unseen text. Muslea, Minton and
Knoblock (2006) suggest three ways of combining view classifiers; by having
the classifiers vote and combine the votes using each classifier’s confidence
estimation in its prediction as weights, by combining the votes by majority, or
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by assigning the classifier that performed the best as the final classifier (see
section 4.3). The approach used in this experiment is a variant of the weighted
voting scheme.

The probability distributionsp andq produced for each token in the input
by the two view classifiers are combined into a new probability distributionk
such that each elementki in k is

ki = w1pi +w2qi (24)

wherepi , qi denote thei-th element in distributionsp andq, respectively. The
weights of the view classifiersw1+w2 = 1. The resultingk then represents the
combined classifier’s classification for the token.

Two variants of weighting are used. The first usesw1 = w2 = 0.5. In the
second variant, the weight for a view classifier is set according to the accu-
racy obtained when the classifier is evaluated, using 10-fold cross-validation,
on the training set. The weights are re-calculated in each iteration of the active
learning loop, as outlined in section 9.1, and they are normalized to sum to 1.
The motivation for dynamically re-weighting the influence of the classifiers is
to favor the best classifier, and suppress the weaker one, thus avoiding using
a view if it is less compatible with the task. If the views are equally compati-
ble with the task, it is anticipated that the use of dynamic re-weighting of the
view classifiers would have less impact, that is, the two weights would end up
converging towards 0.5.

9.3.4.3 Co-testing results

Unfortunately, none of the Co-testing configurations explored managed topro-
duce results better than the single learner baseline. Co-testing is thus not ofany
practical use to the present experiment. Figures 9.15, 9.16, 9.17, and 9.18 il-
lustrate the performance of Co-testing using the c0 feature set split presented
in table 9.1, and the disagreement metrics introduced in section 9.3.1. Fig-
ures 9.19, 9.20, 9.21, and 9.22 show the performance of Co-testing usingthe
c1 feature set split introduced earlier in this chapter along with the same dis-
agreement metrics as are tested with the c0 feature split. In the figures, the
weighting scheme that produced the best results for each metric is shown. For
instance, using the c0 feature set split and the Accumulated log probabilities
disagreement metric, the dynamically weighted combination of the view clas-
sifiers into a single classifier yields results better than the equally weighted way
of combining classifiers; only the learning curve for the former configuration
is on display.
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Figure 9.15: Co-testing using the c0 feature set split with difference-based docu-
ment selection metrics. The two weighting schemes produce insepara-
ble results for vote entropy maxdiff, hence the inclusion ofboth vote
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Figure 9.17: Co-testing using the c0 feature set split with entropy-based document
selection metrics.
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Figure 9.18: Co-testing using the c0 feature set split with Jensen-Shannon Diver-
gence as document selection metric.
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Figure 9.19: Co-testing using the c1 feature set split with difference-based docu-
ment selection metrics.
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Figure 9.20: Co-testing using the c1 feature set split with margin-baseddocument
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Figure 9.21: Co-testing using the c1 feature set split with entropy-based document
selection metrics.
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Figure 9.22: Co-testing using the c1 feature set split with Jensen-Shannon Diver-
gence as document selection metric.
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For the c1 feature set split, the dynamic re-weighting of the view classifiers
produces better results than the equally weighted classifiers for all disagree-
ment metrics. This fact implies that the c1 feature views are not equally com-
patible to the task, and hence that the split is not an optimal one. For the c0
feature set split, however, the equally weighted view classifiers produceresults
better for 6 of the 10 disagreement metrics, while using dynamically weighted
view classifiers win in 2 cases, indicating the c0 views to be better off than the
c1 ones. This, in turn, suggests that splitting the feature sets according to type
of features, as is the case with the c0 views, might be better than to split the
feature sets according to the surface context, which is done in the c1 split.

Due to the lack of positive results, Co-testing will not be further investi-
gated within the scope of this thesis. However, Co-testing as such should not
be dismissed as a plausible candidate for active learning for multi-class prob-
lems such as named entity recognition. What is needed is a more thorough
investigation into the issue of (semi) automatically splitting the feature set into
separate views, and means to validate the views with respect to their indepen-
dence and compatibility to the task at hand.

9.3.5 Effects of the committee size

The number of members in the decision committee is likely to have an im-
pact on the results obtained by a query by committee setting. Out of the three
query by committee approaches examined in this chapter, two allow for the
alteration of the number of committee members; query by boosting, and Ac-
tiveDecorate. Depending on the way that the features used for representing the
data lend themselves to be split into different views, Co-testing is inherently
tied to using a small committee, usually with two members. Given the results
reported in section 9.3.4, it is not likely that further forking the features, and
thus accommodating for additional committee members, would be beneficial
to the overall performance. Hence, the effect of varying the number ofensem-
ble members for Co-testing is not within the scope of the current investigation.

Figure 9.23 shows that varying the number of committee members has an
impact on the performance of query by boosting. The figure illustrates the use
of 2, 5, 10, and 20 committee members; using 2 and 5 members produce results
worse than the passive Boosting baseline. Note that there is a small difference
between using 10 and 20 members. In fact, figure 9.23 suggests that the results
of using 20 committee members are inferior to those of using 10 members.
The relation between the number of committee members and the performance
is anticipated; in Boosting, earlier committee members contribute more to the
performance of the committee than do subsequent members (Webb 2000).
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Figure 9.23: Effects of altering the number of committee members in queryby
boosting. Vote Entropy is used as document selection metric.
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rate. Vote Entropy is used as document selection metric.
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For ActiveDecorate, requesting the meta learner to generate different num-
bers of committee members has virtually no effect at all, as illustrated by fig-
ure 9.24. The results obtained are all approximately the same. However, there
is more to this than meets the eye. Decorate – the passive counterpart to Ac-
tiveDecorate – operates in a different manner than MultiBoosting for creat-
ing sub-samples of the training data. Where MultiBoosting uses re-weighting
of the training instances to form sub-sets with different characteristics, Dec-
orate generates additional, synthetic instances based on the characteristics of
the training data at hand and the contribution to classifier performance made
by the synthetic training examples. The bottom-line is that Decorate is more
involved with the characteristics of the training data when generating sub-sets
on which to train committee members, than is MultiBoosting. This becomes
evident when looking at the relation between the requested number of com-
mittee members, and the actual number of members generated by Decorate
as illustrated in figure 9.25. The information in the figure is based on the av-
erage of five runs. Requesting Decorate to generate two committee members
always succeeds. On the other hand, requesting Decorate to supply more than
two members always results in a number less than the desired. Nonetheless,
the lack of effect of altering the committee size in ActiveDecorate depicted in
figure 9.24 cannot be explained by the inability of Decorate to appropriately
respond to the request for a specific number of committee members alone; de-
spite the large variation on actual committee members, the performance of Ac-
tiveDecorate does not exhibit the corresponding fluctuations. ActiveDecorate
appears to be fairly insensitive to the number of committee members involved,
albeit in a rather discouraging way.

The actual number of committee members obtained in query by boosting
corresponds to the number of members requested; MultiBoosting obviously is
able to accommodate the learning process in such a way that the partitioning
of the training data is less sensitive to the data characteristics than is Decorate.

Another expected effect of increasing the number of committee members is
the increase of the time required to create the committee. Figure 9.26 illustrates
the training and testing time as an effect of the number of committee members
for query by boosting. The time required to train is measured for an increasing
amount of data, while the time required to test the learned models is measured
for the 10 documents in the test set. The ratio of the training time to the testing
time is used as time measurement in order to abstract away the particulars of
the computer used (see section 8.6.1). Increasing the number of committee
members has an articulate effect on the amount of time needed to train the
committee; a committee consisting of 20 members require approximately 3
times the amount of time to learn from 5 documents, than is required to classify
the same amount of data. When facing 30 documents in the training data, the
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Figure 9.27: The effect on increase in time required to train and test the committee
used in ActiveDecorate as an effect of the committee size.

20 committee members require 35 times more time to train on data, than is
required to classify the same amount.

Looking at the corresponding time ratios for ActiveDecorate available in
figure 9.27, it is clear that the phenomenon is not isolated to query by boosting;
rather, it is an effect of the use of committee-based learning methods proper.
ActiveDecorate exhibits even worse training to testing time ratios than query
by boosting. Even though the desired number of committee members appears
to be uncorrelated to the obtained number of members, as illustrated in fig-
ure 9.25, the effect of increasing the number of committee members on the
training and testing time is evident. When Decorate tries to learn a desired
20 committee members on 5 documents, the training time required is approx-
imately 15 times the time required to classify the same amount of data. The
same ratio when faced with 30 documents is approximately 115. Both figures
are significantly larger than the corresponding figures for query by boosting.

Although the results in figures 9.26 and 9.27 are independent of each other,
the facts that the test sets used both for query by uncertainty and ActiveDec-
orate are of the same size, and that the two meta learners use the same base
learner configuration provide a hint that ActiveDecorate is much slower than
query by boosting.
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9.4 An active world order

The results reported in this chapter point out query by boosting using Multi-
Boost with 10 committee members generated by a REPTree base learner, and
vote entropy as disagreement metric as the best combination for realizing ac-
tive document selection in a named entity recognition setting. The seed set
used is made up by 5 randomly selected documents, and the test set on which
the active learning is evaluated consists of 10 randomly drawn documents. In
this section, the results are further analyzed.

Figure 9.28 shows the performance, in F-score, of query by boosting rel-
ative to the Boosting baseline. The query by boosting curve is the averageof
10 active learning runs, while the baseline is the average of 5 passive runs.
Breaking down the F-score into precision and recall, figure 9.29 revealsthat
the performance gain of active learning compared to the passive baselineis
made primarily in terms of increased recall, but that there also is an increase in
precision.

The results reported in figure 9.28 can be interpreted in two ways. The
first way is that a given classification performance can be reached usingless
training data in the active learning case, than would be necessary when learn-
ing from a randomly selected set of documents form the same corpus. For
instance, reaching 78% F-score by means of query by boosting requires the
human annotator to mark up named entities in approximately 20 documents,
while reaching the same performance in a passive learning setting would re-
quire him to annotate approximately 30 documents selected at random from the
same corpus. If instead the desired performance is 80% F-score, the human an-
notator would have to mark up approximately 42 actively selected documents
or 50 randomly selected documents. Thus, the difference in classification per-
formance between active and passive learning decreases as the learning process
progresses.

The second way to interpret figure 9.28 is that given a fixed amount of data,
active learning (almost) always results in classification performance superior
to that of learning from randomly selected documents.

9.4.1 Sub-task performance

By analyzing the performance on the named entity recognition sub-tasks, as
described in section 8.7.2 it is possible to pin-point where the performance gain
of active learning, compared to passive learning, is made. Figure 9.30 shows
the F-score for the named entity recognition sub-tasks ENAMEX, TIMEX, and
NUMEX as obtained by query by boosting compared to the baseline.

The active learning results for the two largest classes of names, ENAMEX
and TIMEX, both improve on the baseline (the characteristics of the data is
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Figure 9.28: The performance of the vote entropy selection metric used with query
by boosting on the full corpus.
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outlined in section 7.1). In fact, the smallest class of names, NUMEX, proves
to be a substantially harder task to solve by means of active learning. Queryby
boosting fails severely in learning to recognize NUMEX entities, and the re-
sults are well inferior to that of the passive Boosting baseline. Figure 9.31fur-
ther breaks down the performance on the NUMEX sub-task into precision and
recall as obtained by active learning precision and the baseline. Initially, the re-
call of query by boosting is almost comparable to that of the baseline, but asthe
learning progresses, the active learning recall diverges from the baseline’s re-
call. The query by boosting precision exhibits the opposite trend; while starting
badly, the active learner produces precision better than the baseline’s precision
after having seen the whole corpus. Thus, the classification performancefor a
small class suffers from the kind of active learning set-up employed.

9.4.2 Performance variations

The learning curves used for illustration so far are all the average of several
runs. As such, they do not tell the whole story. For example, they do not explain
the difference between the starting points of the active learning curve with re-
spect to the passive one in figure 9.28. In theory, there should be no difference
since the starting points of both curves are the result of randomly selecting
documents (see further chapter 10). The explanation for discrepancies like this
can be the variation in results that occur as an effect of randomly selectingthe
test set and the seed set. Figure 9.32 on page 158 shows the standard deviation
of the classification performance, in F-score, for the baseline as well asquery
by boosting. It turns out that the standard deviation of both learning methods
overlap more or less throughout the processing of the corpus. Ideally,the ac-
tive learning curve should exhibit a clear decrease in standard deviationas an
effect of the committee of classifiers being trained on increasing amounts of
data. While active learning achieve performance superior to that of the passive
Boosting baseline, the variance of the active learning results are worse than
that of the baseline. The average standard deviation of the F-score achieved by
active learning is 2.5% F-score, while the corresponding number for the base-
line is 2.35% F-score. Despite the fact that the two curves in figure 9.32 are
based on a different number of runs – query by boosting on 10 active learning
runs, and the passive baseline on 5 runs – it is possible to observe a tendency of
the former to be smoother both in terms of less variation of standard deviation
between consecutive documents, and in terms of a more even distribution of
the standard deviation. Also, the baseline performance variance shows aten-
dency to increase from 20 documents and onward, the tendency for query by
boosting is rather the opposite.
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In the span between the start of the active learning, which in this case is at
5 documents, and the point at which the active learning curve has leveled out,
approximately at 40 documents, the difference between the query by boosting
curve and the baseline is the greatest, both in terms of performance, and in
terms of variation of the performance (see figures 9.28 and 9.32). It is in this
span that such a difference is expected to be important to a human annotator
since it is here that the contribution of the active learning to the annotation
process is most substantial.

In the previous section, the sub-task of recognizing percentages and mon-
etary expressions, NUMEX, is identified as the task which active learning has
the most trouble learning. Figure 9.33 on page 158 illustrates the standard de-
viation of query by boosting versus the passive baseline for NUMEX. Appar-
ently, the active learner not only has troubles learning to solve the task, but it
also does it in a way that results in a very large variance of the results.

Figures 9.34 and 9.35 on page 159 show the corresponding graphs forquery
by boosting and the baseline on the ENAMEX and the TIMEX class, respec-
tively. The average standard deviation of the F-score achieved by query by
boosting on the ENAMEX and TIMEX classes is lower than that obtained by
passively learning. Query by boosting obtains an average standard deviation of
2.84% F-score for ENAMEX, and 3.22% F-score for TIMEX. The correspond-
ing numbers for the baseline are 2.88% and 4.31%, respectively. In thesecases,
the standard deviation of the performance of active learning actually doesde-
crease as an effect of more data being available. However, the big spoiler is the
average standard deviation of the F-score obtained by query by boosting on the
NUMEX class; 19.25% F-score. The baseline manages to cut that in half, and
ends up at 10.01%.

9.5 Implications for the BootMark method

What do the results reported in this chapter entail in terms of practical impli-
cations for the BootMark method outlined in chapter 6? As a response to the
questions posed initially in this chapter in relation to emerging issue E–3, the
following holds for the particular task pursued:

• Query by boosting using vote entropy as disagreement metric yields the
best classification performance. A second candidate, albeit not at all as
good, is ActiveDecorate using Accumulated-logprob for quantifying the
informativeness of documents.

• It is enough to use 10 members in the query by boosting decision com-
mittee. Employing fewer members yields worse performance, while us-
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ing more members increases the training time without increasing the
performance correspondingly.

ActiveDecorate appears to be insensitive to the number of committee
members used, for good or worse. Further, Decorate more often than not
has troubles generating the number of committee members requested.

• As a function of the availability of growing amounts of training data, the
time required to train the committee used in query by boosting increases
slower in relation to the time required for the committee to classify a
fixed size test set, than the corresponding ratio does for ActiveDecorate.
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Figure 9.32: The standard deviation of the performance in F-score achieved by the
baseline (top graph) and query by boosting (bottom graph). The vertical
lines mark the area between the start of the active learning process until
the active learning curve levels out. The average standard deviation for
the baseline is 2.35% F-score, the average for query by boosting is
2.50% F-score.
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Figure 9.33: The standard deviation of the performance in F-score achieved by the
baseline and query by boosting for the NUMEX class of names. The
average standard deviation for the baseline is 10.01% F-score, and
19.25% F-score for query by boosting.
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Figure 9.34: The standard deviation of the performance in F-score achieved by the
baseline and query by boosting for the ENAMEX class of names.
The average standard deviation for the baseline is 2.88% F-score, and
2.84% for query by boosting.
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Figure 9.35: The standard deviation of the performance in F-score achieved by the
baseline and query by boosting for the ENAMEX class of names.
The average standard deviation for the baseline is 4.31% F-score, and
3.22% for query by boosting.





10SEED SET

CONSTITUTION

This chapter investigates emerging issue E–2 in section 6.6 pertaining to the
constitution of the set of documents initially used for starting the active learn-
ing process; the seed set. The following two questions are addressed:

• How does the number of documents in the seed set affect the learning
results?

• Is selecting documents based on clustering better than random selection?

10.1 Seed set size

Assume that the seed set is constructed by randomly selecting documents. In-
tuitively, an active learning curve should start in the vicinity of the baseline
curve, since the starting point of the active curve, and the point at the baseline
curve corresponding to the same amount of data, are both the effect of random-
ness. Following from this, the effect that the size of the seed set might have on
the active learning curve should be sought not in terms of differentiated starting
points and overall performance with respect to the baseline curve, but rather in
terms of the fluctuation of performance. A small seed set is expected to yield a
greater initial variance in performance than a larger seed set. Does the size of
the seed set have an impact on the standard deviation of active learning results
when the learning process proceeds?

Figures 10.1 and 10.2 indeed show that the size of a randomly selected seed
set has little effect on the resulting active learning curve. The figures depict
query by uncertainty, using the best configuration as reported in section9.2,
while varying the size of the seed set from 1 to 10 randomly selected doc-
uments. All active learning curves start near the baseline curve, and they all
follow approximately the same trajectory, slightly improving on the baseline.

The effect of the number of randomly selected documents making up the
seed set on the standard deviation of learning is illustrated in table 10.1. There
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Figure 10.1: Effects of randomly selecting seed sets of sizes 1 to 5 documents for
query by uncertainty. Using REPTree as base learner and Log proba-
bility as document uncertainty metric.
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SIZE SD-INIT SD-40 SD-AVG

1 0.0426 0.0466 0.0421
2 0.0454 0.0163 0.0207
3 0.0428 0.0099 0.0249
4 0.0564 0.0344 0.0297
5 0.0667 0.0453 0.0413
6 0.0645 0.0371 0.0387
7 0.0113 0.0354 0.0289
8 0.0472 0.0266 0.0364
9 0.0314 0.0373 0.0246

10 0.0465 0.0107 0.0165

Table 10.1: The effect of the seed set size on the standard deviation of performance
of query by uncertainty. SIZE is the number of documents randomly se-
lected as the seed set, SD-INIT is the standard deviation of the F-score
when using SIZE number of documents, and SD-40 is the standard de-
viation of the F-score for the curve starting with SIZE documents when
40 documents are available in the training set. SD-AVG is the average
standard deviation of the curve starting with SIZE documents.

is no correlation worth mentioning11 between the size of the seed set, and the
standard deviation of classifier performance after training on the seed set, or
on 40 documents. The average of the standard deviation is not correlatedwith
the seed set size either.

In figure 10.3, the effects of randomly selected seed sets of sizes one, five,
and ten documents are illustrated for the best query by boosting configuration
obtained in section 9.3.2. As with query by uncertainty, the learning curves
generated by learning on the different seed sets follow the same trajectory.
Table 10.2 shows the initial standard deviations of the performance, the stan-
dard deviation after training on 30 documents, as well as the average standard
deviation for each of the three curves. The average standard deviationof clas-
sification performance is clearly affected by the number of documents in the
seed set.

SIZE SD-INIT SD-30 SD-AVG

1 0.0776 0.0264 0.0290
5 0.0428 0.0101 0.0196

10 0.0230 0.0158 0.0162

Table 10.2: The effect of the seed set size on the standard deviation of performance
of query by boosting.

11The Spearmanρ correlation is computed, and if a correlation coefficient value less than 0.5
for two variables is obtained, the variables are considered to be uncorrelated.
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Figure 10.3: Effects of randomly selecting seed sets of sizes 1, 5 and 10 documents
on query by boosting. Using REPTree as base learner and Vote entropy
as disagreement metric.

Due to its ability to harness small amounts of training data, the performance
by query by committee, after having trained on the seed set, exhibits less vari-
ance than does query by uncertainty. Overall, both active learning methods
exhibit reduced standard deviation of classification after 30 documents, as an
effect of larger seed sets.

10.2 Clustering-based versus random selection

Instead of drawing seed set documents at random from the entire document set,
the idea pursued here is to cluster the documents inton clusters, and select the
documents to include in the seed set of sizen from the centers of the clusters.
The hope is for the different clusters to contain different distributions ofname
types. Sampling one document from each cluster would then mean that names
with different characteristics are represented in the seed set. The problem is
that the names as such are not directly addressable since their whereabouts
and appearance are not known. A better seed set can be manifested byan initial
classification performance better than that resulting from randomly selecting
the seed set, or by a reduced variation of classification results as the learning
process proceeds. It should be noted that the approach taken here isnot an
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exhaustive investigation into the possibilities of clustering-based methods, but
merely a first attempt to make more informed, yet automated decisions as to
what goes into the seed set.

An algorithm called Simple K-means is employed for clustering the doc-
uments in the corpus. The algorithm is described by, for instance, Witten and
Frank (2005). Simple K-means is attractive since it allows for deciding on the
number of resulting clusters beforehand. It is also fast, which is an advantage
since it is used in a way that requires it to be applied repeatedly, as will be ex-
plained later. The Weka implementation of Simple K-means requires as input
a set of objects to cluster, documents in this particular case, information about
how many clusters to create, as well as a random seed. The algorithm is as
follows:

1. Based on the random seed, randomly selectK documents to act as the
initial cluster centroids. A centroid can be defined as an (imaginary)
document that sits at the center of a cluster.

2. Assign each of the documents in the document set to the cluster that has
the closest centroid.

3. When all documents have been assigned to a cluster, re-calculate the
positions of the centroid in each cluster.

4. Repeat steps 2 and 3 until the centroids do not move between re-calcu-
lations.

Simple K-means is proven to always terminate; however, the constitution of
the clusters is sensitive to the initial, random, selection of cluster centers.

Each document used as input to Simple K-means is represented as a feature
vector in which the features are lemmatized words and the feature values are
the relative weights of the words. The lemmatized version of the corpus is ob-
tained by using EN-FDG (introduced in chapter 7). The weights are calculated
based on term frequency and inverse document frequency, as well as filtered
by using a Weka built-in English stop word list. The number of features used
is constrained to the 1000 most highly ranked lemmas in the corpus.

The output from Simple K-means is information about the sizes of the clus-
ters, the cluster centroids, as well as about the sum of squared errorswithin
each cluster. The sizes of the clusters are given as the percentages ofthe docu-
ments in the original document set belonging to each cluster.

Simple K-means is put to use in two different ways in order to create clus-
ters of the corpus from which to select the seed set. For both ways, the docu-
ments closest to the cluster centroids are selected. In the first way, as evenly
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Figure 10.4: Effects of selecting seed set documents based on clusteringfor query
by uncertainty.

sized clusters as possible are created. In the second way, clusters of as uneven
size as possible are exploited. The reason to use such orthogonal approaches
is to facilitate the verification of any impact that Simple K-means clustering
may have on selecting the seed set. Cluster size similarity is quantified as the
least standard deviation of the cluster sizes given by the clusterer as percent-
ages. The sensitivity of Simple K-means towards the initial selection of cluster
centers is exploited for controlling the sizes of the clusters. In order to obtain
evenly sized clusters, Simple K-means is supplied with different seeds for the
random selection of the centroids, and the seed yielding the set of clustersthat
exhibits the smallest standard deviation in cluster size is selected. The same
approach is used to obtain unevenly sized clusters, except of course for the
fact that the configuration selected is the one exhibiting the largest standard
deviation. The seed supplied to Simple K-means is varied between 0 and 60
in increments of one. In the case there is a tie between cluster configurations,
the setting which results in the clusters with the least within-cluster sum of
squared errors is selected.

Figure 10.4 shows the effect of applying the two clustering approaches to
query by uncertainty. As illustrated in the figure, there is no clear difference
between the results produced by the two clustering-based seed set selection
methods. The figure also suggests that randomly selecting the seed set re-
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METHOD SD-INIT SD-40 SD-AVG

Random 0.0312 0.0267 0.0268
Even 0.0252 0.0246 0.0235
Uneven 0.0327 0.0335 0.0286

Table 10.3: The effect of the seed set selection method on the standard deviation of
performance of query by uncertainty. The METHODs used are randomly
selecting 5 documents, selecting them based on evenly sizedclusters, or
on unevenly sized clusters. SD-INIT is the standard deviation of the per-
formance after having trained on the seed set, SD-40 is the performance
after having trained on 40 documents. SD-AVG is the average standard
deviation.

sults in performance slightly better than that of either of the two clustering
approaches. It appears as if the way of clustering the corpus described above,
prior to selecting the seed set, has no effect on the initial performance. The
performance after 40 documents indicates that a seed set selected at random is
better than the clustering-based approaches.

Table 10.3 shows the standard deviations of the classification performance
for the three different seed set selection methods. From the table, it is clear that
the clustering method in which the clusters are made as evenly sized as pos-
sible results in the least deviation of the performance in terms of the standard
deviation when trained on the seed set, when trained on 40 documents, and as
the lowest average standard deviation of the three methods. Randomly select-
ing the seed set is better than using the clustering approach that uses unevenly
sized clusters.

Figure 10.5 illustrates the effects of clustering-based seed set selection on
query by boosting. Neither of the clustering methods contribute to improved
results compared to random selection of the seed set. On the contrary, clus-
tering seems to inhibit classification performance and place it on par with the
Boosting baseline. Turning to the performance standard deviation, table 10.4
shows that unlike query by uncertainty, query by boosting does not benefit to
the same extent from a seed set selected by clustering. Selecting the seed set

METHOD SD-INIT SD-30 SD-AVG

Random 0.0428 0.0101 0.0196
Even 0.0399 0.0201 0.0267
Uneven 0.0324 0.0347 0.0335

Table 10.4: The effect of the seed set selection method on the standard deviation of
performance of query by boosting.
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Figure 10.5: Effects of selecting seed set documents based on clusteringfor query
by boosting.

from a document space clustered into evenly sized clusters results in a smaller
average standard deviation of performance than does selecting the set from
uneven clusters, albeit the initial standard deviation is slightly larger with the
former method. What is particularly worth noticing is that while selecting the
seed set at random, or from evenly sized clusters, results in a decrease in clas-
sification standard deviation as the learning process proceeds, the same effect
is not accomplished when the seed set is selected from uneven clusters.

10.3 Implications for the BootMark method

The results reported in this chapter pertain to emerging issue E–2 in section 6.6,
and the two questions posed initially are answered in the following.

• Increasing the number of documents in a randomly selected seed set has
the obvious effect of increasing initial classification performance. Other
than that, neither query by uncertainty, nor query by boosting produces
results that vary as an effect of the seed set size.

Increasing the size of the seed set affects the variance of the classification
results. Both learning schemes exhibit reductions in the standard deviation of
the performance as the sizes of the seed sets increase.
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• Generally, selecting documents based on clustering, as it is used here, is
not better than randomly selecting the seed set.

None of the learning schemes managed to produce better classification results
when seed sets selected based on clustering were used. On the contrary, the
results achieved prove to be inferior to those using random seed set, approxi-
mately on par with the baselines.

As for the effect of clustering-based seed set selection on the variance of
classification performance, query by uncertainty and query by boostingare af-
fected somewhat differently. The smallest average standard deviation achieved
for query by uncertainty follows from selecting the seed set from the centroids
of evenly sized clusters. For query by boosting, the same effect is achieved
using a randomly selected set. Selecting the seed set based on unevenly sized
clusters is sub-optimal for both learning schemes.





11MONITORING AND

TERMINATING THE

LEARNING PROCESS

This chapter addresses the questions concerning the monitoring and terminat-
ing of the active learning process, listed as emerging issue E–4 in section 6.6.
The purpose of keeping track of the learning process is to provide the human
annotator with means to form a picture of the learning status. Once the status
is known, the annotator has the opportunity to act accordingly, for instance,
to manually stop the active learning process, or to form an assessment of the
quality of the annotations made so far.

The purpose of defining the stopping criterion is slightly different than that
of monitoring the learning process. A stopping criterion is used to automati-
cally shift between phases two and three in the BootMark annotation method
outlined in chapter 6, and as such it should not hinder nor disturb the human
annotator. The questions addressed in this chapter are the following:

• Can the progress of the active selection of documents be monitored and
visualized without the use of a designated, held-out, marked-up test set?

• Can the point at which it is appropriate to halt the active selection of
documents, and transit between phases two and three in BootMark, be
identified?

It should be remembered that there is a readily available way of monitoring the
process, and thus also to be able to manually decide when the active learning
should be stopped; to use a marked-up, held-out test set on which the learner
is evaluated in each iteration. This is the way the learning curves presented so
far have been calculated. The drawback of this method is that the user hasto
manually annotate more data before the annotation process takes off. As such,
it clearly counteracts the goal of the BootMark method and should only be
considered a last resort.
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Figure 11.1: An illustration of the change in validation set agreement ona held-out
unannotated document set as an effect of annotated, actively selected
documents available for training.

11.1 Monitoring as decision support for terminating learning

Tomanek and Hahn (2008) propose to use a held-outunannotated set of exam-
ples on which the disagreement among the committee members used in a query
by committee setting is calculated in each iteration. This is referred to as the
validation set agreement. The key to calculating the validation set agreement
is that the distribution of instances in the held-out data set (the validation set)
is the same as, or very similar to the distribution of instances in the data used
for active learning. The purpose of calculating this score is to form a picture
of the disagreement between the committee members concerning the set as an
effect of the committee being trained on increasingly more, actively selected
data. The change in disagreement, Tomanek and Hahn claim, can be used as
an indirect approximation of the learning curve that would have been the result
of evaluating the committee’s performance on a designated and marked-up test
set. The underlying assumption is that the agreement within the committee is
reflected in its performance. In other words, that a higher agreement concern-
ing the predicted labels also corresponds to higher accuracy of the committee
when evaluated on a test set. Tomanek and Hahn (2008) show that their ap-
proach works for active learning in a named entity recognition setting in which
sentences are selected for annotation.



11.1 Monitoring as decision support for terminating learning173

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15
 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

V
ot

e 
E

nt
ro

py
Disagreement on the selected document

 0.85
 0.86
 0.87
 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

1 
- 

V
ot

e 
E

nt
ro

py

Number of documents in the training set

Agreement on the selected document

Figure 11.2: The disagreement (Vote entropy) among the members of the committee
concerning the most informative document in each active learning iter-
ation (top graph). When the graph is inverted and smoothed using cubic
splines, its shape resembles that of a learning curve (bottom graph).

For the purpose of learning how to recognize named entities based on ac-
tive selection of documents, the validation set agreement curve does not at
all resemble the ones presented by Tomanek and Hahn (2008). Figure 11.1
plots the disagreement of the committee members to the number of documents
used for training, and it is clear that the resulting graph is not immediately
useful for forming a picture of the progression of learning. The reason that
the graph in figure 11.1 is so different from those presented by Tomanekand
Hahn is because of the granularity of the data for which the disagreement is
computed; Tomanek and Hahn calculate the disagreement as the average token
vote entropy per sentence, while the current experiment defines disagreement
as the average token vote entropy in a document. Admittedly, using the latter
definition appears to be too blunt an instrument to properly measure the dis-
agreement for the purpose of approximating the classification performance of
the classifier learned in the active learning process.

Another candidate measure is the disagreement among the members of the
decision committee concerning the classification of the document selected as
the most informative one, that is, the document for which the committee dis-
agrees the most. This measure is introduced by Tomanek, Wermter and Hahn
(2007a) as the selection agreement. Figure 11.2 consists of two parts. Thetop
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Figure 11.3: The classification performance in F-score on the document deemed the
most informative in each active learning iteration. The classification re-
sults are illustrated as dots, and the curve is created usingcubic splines
to get a smoother path.

part illustrates the disagreement, vote entropy, among the members of the deci-
sion committee regarding the classification of the most informative document
selected in each active learning iteration. In the bottom part of the figure, the
disagreement curve has been inverted to depict the agreement, and smoothed
using cubic splines.12 In shape, the curve resembles a learning curve such as
the one in figure 9.28, but in figures it does not. The bottom graph in figure11.2
is as close to the prototypical learning curve shape that can be producedwith-
out actually using a designated test set.

A third candidate way to form an image of the progression of learning is that
of evaluating the learned named entity recognizer on the document deemed the
most informative in each iteration of the active learning process. The perfor-
mance of the committee of classifiers is calculatedafter the human annotator
(which is simulated, see section 9.1) has annotated the document, butbeforeit
is added to the training set. The result is available in figure 11.3. However, the
resulting curve, although smoothed, is too rough to be expected to be of use

12A spline is a mathematical way of describing parametric curves used for data smoothing
and interpolation. GnuPlot, the program used for constructing the graphsin the thesis, provides
a function implementing cubic splines for smoothly connecting data points in a graph.
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to a person annotating data; with such an oscillating curve, it is hard to know
what is going on until an additional number of active learning iterations have
passed. Consider for instance the peak occurring after 18 documents.How is
the annotator using this curve as a way of monitoring the learning process for
the documents he has annotated to know that it is a peak, and a local one at
that, that he is experiencing when he sees the performance after 19, 20 or even
21 active learning iterations? Indeed, the “knee” depicted by the curve approx-
imately around 20–25 documents corresponds to a point on the learning curve
obtained by evaluating the committee of classifiers on a held-out, annotated
test set where the performance has leveled out (see figure 9.28). Thiskind of
interpretation of the graph is only possible when sufficiently many additional
documents have been processed.

11.2 Using committee consensus for terminating learning

The purpose of defining a stopping criterion is to facilitate the automatic tran-
sition between the phase in which documents are actively selected for annota-
tion, and the phase in which the learned classifier acts as a pre-tagger (chap-
ter 6). A number of ways to know when to stop active learning have been
proposed in the literature, as outlined in section 4.8. There are basically three
ways to define a stopping criterion: as a function of the amount of data pro-
cessed, as an effect of having reached a given classification performance, or
based on indications that the active learning process no longer contributes to
the overall performance. The two former ways involve deciding, beforehand,
on some number of documents, or level of performance at which the learning
should be stopped. To make such decisions, a great deal has to be known about
the learning process, the domain, and the expected number of documents pro-
cessed or the performance possible to reach. In defining the BootMark method,
it is desirable to refrain from having to introduce arbitrary thresholds to beset
by the human annotator, since such thresholds would merely confuse the user.
Instead, a dynamic stopping criterion, based on the characteristics of the data
at hand, is what is aimed for.

The selection agreement measure proposed by Tomanek, Wermter and Hahn
(2007a) is an intuitive criterion for the stopping of active learning; the learning
process should be aborted when the active learning no longer contributes to
increasing the classification performance. That point in the process is reached
when the committee members no longer disagree (or completely agree) on the
classification of most informative (disagreed on) item in the remaining unla-
beled pool of data.13 The selection agreement is mainly influenced by two fac-

13Depending on the context, the termsselection agreementandselection disagreementare
used to describe the same thing. The disagreement is quantified using the vote entropy metric,
while the agreement is 1−vote entropy, as exemplified in figure 11.2.
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tors: the ability of the decision committee to harness the information provided
in the informative examples that are labeled by the human annotator and later
used for training the classifier; as well as the data available in the diminishing
pool of unlabeled data.

In the current experiment set-up, active learning does not contribute toin-
creasing the classification performance when all committee members used in
query by boosting agree on the classification of a document from the set of
unlabeled documents, that is, when the vote entropy for the most informative
document is zero. The top graph in figure 11.2 depicts the vote entropy forthe
most disagreed on document versus the number of documents in the training
set. As is clear from the figure, the vote entropy does not reach zero during
the course of processing the 90 unannotated documents in the corpus. This can
mean one of two things: either the corpus is too small and active learning ac-
tually does contribute to the classification performance after having processed
90 documents, or it might mean that the disagreement will never reach zero.
While the former surely is a part of the reason why the selection disagree-
ment does not reach zero, the latter might be a more plausible explanation.
For the selection agreement to be complete (when vote entropy is zero), all
ten members of the decision committee must assign the same class label to
each individual token in the most informative document. Either way, the im-
plication of the graphs in figure 11.2 is that the stopping criterion proposed by
Tomanek, Wermter and Hahn (2007a) can neither be confirmed to work in the
current experiment set-up, nor put to practical use on its own.

11.3 An intrinsic stopping criterion

When the committee used in active learning for selecting the next document
to annotate completely agrees on the proposed classification, it is clear that
active learning does not contribute anything more to the learning process than
would randomly selecting documents from the remainder of the unannotated
corpus. Thus, at that point, the active learning process should be terminated
to avoid computational overhead. So, if a completely agreeing committee is
a sign that the active learning processshouldbe terminated, when is the first
point at which there is a balance between the annotation effort required by
the annotator and the performance gained, that is, where the learningmaybe
terminated without running the risk of losing too much in performance?

Figure 11.4 illustrates the combination of the validation set agreement curve,
and the selection agreement curve. That is, the figure shows the committee dis-
agreement concerning a held-out unannotated set of ten documents randomly
selected from the original corpus, and the same committee’s disagreement re-
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Figure 11.4: The disagreement (vote entropy) among the committee of classifiers on
the most informative document versus the disagreement on a held-out
unannotated set of documents. The intersectionC is a candidate point
for early stopping of the active learning process.

garding the classification of the most informative document from the remain-
ing unannotated corpus. The results in the figure are the averages of tenruns.
A candidate for a point at which the active learningmaybe stopped is the in-
tersection,C, between the two disagreement curves in figure 11.4. As the data
available for training increases beyond the intersection point of the two curves,
the decision committee becomes more in agreement concerning the classifica-
tion of the most informative document out of the 28 documents that remain in
the set of unannotated documents (setA), than it is regarding the classification
of the ten documents in the held-out unannotated test set (setB). This situation
implies that the committee of classifiers would learn more from a sufficiently
large random sample from a document set with the same distribution asB, than
it would from actively selecting documents fromA.

Two cases regarding the distribution of named entities emerge. Assume that
the distribution of the classes in setB and in the original document set is not the
same. Then the intersection pointC in figure 11.4 is irrelevant for monitoring
the learning process, and is hence not a candidate for early stopping. Thus, to
be able to deemC as a plausible place for early halting of the active learning,
more knowledge about the distribution of target classes in setB in relation to
the original document set is required.
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Assume, on the other hand, that the distribution of instances in setB is the
same as, or very similar to, the original distribution of instances in the unla-
beled document setA. In this case, the validation set agreement, when calcu-
lated onB, can be used as an approximation of the validation set agreement of
a version ofA from which no instances has been removed. In effect,B is used
as a version ofA which is not affected by the active learning process.

When the intersection between the validation set agreement curve and the
selection agreement curve, denotedC in figure 11.4, is reached, the perfor-
mance gain of active learning from the remaining documents inA is less than
that resulting from learning from random samples from the original distribu-
tion B. At this point, the question is: Is the overhead involved in pursuing
active learning beyondC worth the effort, or should the active learning be
halted? Although the scope of the thesis does not include issues pertaining
to cost models of specific annotation tasks, one thing can be said in favor of
halting the learning atC: If the agreement concerning the hardest (most infor-
mative) example (document) remaining in the unlabeled pool is greater than
the average agreement on the classification on all documents in the validation
set (setB), then it is safe to say that the active learning process has managed
to “squeeze” the most out of the original unlabeled pool, and that the steepest
part of (a presumed) learning curve has been passed. Thus, at this point, the
learning process may be aborted.

Compared to using the selection agreement as sole indicator of an appro-
priate point at which to stop the active learning, the intersection between the
selection agreement curve and the validation set agreement curve represents
an early stopping criterion for pool-based query by committee. Furthermore,
the information required to decide whether the intersection has been reached
is intrinsic to the data and the learner configuration used; as such, it does not
make use of pre-defined thresholds.

Figure 11.5 combines the results of the best active learning setting for se-
lecting documents to annotate (available in figure 9.28 on Page 153) with the
validation set agreement curve and the selection agreement curve (shown in
figure 11.4). Figure 11.5 shows that the intersectionC of the latter two curves
corresponds to a point at the learning curve at which it has clearly passed the
“knee”, that is, the steepest part.14 Thus, under the previously mentioned as-
sumption concerning the distribution of entities in the data sets used, the in-
tersectionC appears to correspond to a point at which it the active learning
processmaybe terminated without running the risk of ending up with a final

14It should be noted here that the document set used for calculating the validation set agree-
ment is the same document set that is used for calculating the learning curve. The set consists
of ten randomly selected documents, that is, one tenth of the documents available.
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to a point on the active learning curve which indicates that the benefits
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classifier exhibiting a performance significantly worse than one trained on all
data.

In this particular experiment, halting the active selection of documents at
C results in a classifier achieving roughly the same F-score as a classifier pas-
sively trained on all annotated data (as illustrated byP in figure 11.5). Given
this, the benefits of actively selecting documents to annotate outlined in sec-
tion 9.4 can now be further clarified: given the experimental set-up used in
the thesis, halting the active learning process once the intersectionC has been
reached results in a reduction of the number of documents that require annota-
tion from 90 to 62.

11.4 Implications for the BootMark method

The results reported in this chapter pertain to emerging issue E–4 outlined in
section 6.6. The answers to questions posed initially in this chapter follow.

• The progress of the active learning process can be monitored and visu-
alized without using a held-out designated annotated test set. However,
the two ways of visualization suggested do not reveal the estimated per-
formance of the classifiers learned.

The first proposed way is to use the (selection) agreement among the classifiers
in the committee regarding the classification of the most informative (least
agreed on) document in each active learning iteration (figure 11.2).

The second way to visualize the learning process is to plot the selection dis-
agreement (the inversion of the above), as well as the disagreement withinthe
committee regarding the classification of a held-outunannotated document set
(figure 11.4). Although the graph is not similar to a learning curve, it conveys
more information about the current status of learning than figure 11.2, under
the assumption that the held-out document set is of the same distribution as the
original unlabeled corpus used for active selection of documents.

• The point at which to terminate active learning and transit between Phas-
es Two and Three in BootMark is proposed to be at the intersection be-
tween the selection agreement curve and the validation set agreement
curve, that is, when the selection agreement is larger than the validation
set agreement (see figure 11.5). This approach constitutes a new, intrin-
sic stopping criterion for committee-based active learning.

Following Tomanek, Wermter and Hahn (2007a), the active learning process
shouldbe stopped once the selection disagreement among the members of the



11.4 Implications for the BootMark method181

decision committee as to the classification of the most informative document
has reached zero.

By using a randomly selected, held-out unannotated document set for calcu-
lating a reference disagreement curve – validation set agreement – a candidate
early point at which the active learning processmaybe stopped is defined as the
intersection between the reference disagreement curve and the curve obtained
by calculating the disagreement concerning the most informative document re-
maining in the unlabeled document set, provided that the distribution of classes
in the set underlying the reference curve is the same as in the unlabeled docu-
ment set. When the intersection is reached, the user knows that active learning
contributes less to the increase in performance than would a sufficiently large
random sample from a document set of the same distribution as the original
corpus.





12ON THE APPLICABILITY

OF PRE-TAGGING WITH

REVISION

This chapter addresses emerging issue E–5 outlined in section 6.6 pertaining
to the plausibility of using an actively learned named entity recognizer as a
pre-tagger, as proposed for the third phase of the BootMark method described
in section 6.5. The idea of using a pre-tagger is to be able to turn a manual
annotation process into one in which the human annotator reviews annotations
suggested by the tagger instead of creating annotations from scratch. The aim
is to speed up the annotation process, while at the same time maintaining con-
sistent annotation results. In particular, the following questions are discussed:

• What are the requirements on the classifier used as pre-tagger in terms
of accuracy?

• Is pre-tagging with revision applicable during the bootstrapping process,
that is, is it applicable already in phase two of the BootMark method
while the tagger is being trained?

12.1 Pre-tagging requirements

As previously mentioned, there are two strands to using pre-tagging, both of
which appear to be valid depending on the outset of the annotation endeavour
ahead. The first camp advocates the use of pre-tagging with the argumentthat
using a pre-tagger speeds up the annotation process, since the human annotator
is assumed to only have to focus on the system-suggested annotations. The
other camp objects to pre-tagging due to the potential bias it introduces. The
core of the two arguments is essentially the same; the human annotator is most
likely to focus only on the annotations produced by the pre-tagger, which,
depending on the quality of the pre-tagging, can be used as an argument for
or against pre-tagging as such.

Whether the use of pre-tagging is a problem or not, seems to some extent
to depend on the nature of the tagging process proper. If the results of the
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pre-tagger include most of the annotations desired (high recall), then conse-
quently the user is able to assess most of the annotations by only taking into
consideration those produced by the tagger. If, on the other hand, the results of
the pre-tagger are exact (high precision), the user might miss out on plausibly
correct annotations if he is only considering the system-suggested ones.

The results of the experiments on actively selecting documents to anno-
tate reported on in section 9.4 demonstrate that while both recall and precision
increase, the principal achievement is made in terms of recall. Further, if the
second phase of the BootMark method is terminated as is suggested in sec-
tion 11.2, the resulting actively learned named entity recognizer performs on
par with a passively learned recognizer trained on the full corpus. Thus, the ac-
tive learning process results in a named entity recognizer that is as suitable for
pre-tagging as a recognizer obtained the traditional way. In the light of thear-
guments of pre-tagging pros and cons, this suggests that the use of an actively
learned tagger at least is not inimical to the annotation process. However,due
to the fact that the human annotator is simulated in the experiments carried out
in the present thesis, it is not at this point possible to determine exactly how
pre-tagging affects the outcome of the BootMark method. To be able to assess
the effects of pre-tagging, a set-up involving real users annotating a corpus for
a real named entity recognition task is best used. Thus, the issue of require-
ments posed on a pre-tagging step used in the BootMark method has to be
deferred to future investigations.

12.2 Pre-tagging during bootstrapping

The experiments reported in chapter 9 provide a view on how the errors made
by the actively learned classifiers are distributed in a case where the annotator
is assumed to be consistent and not to make any mistakes. Figure 12.1 contains
information about the matches made by the best query by boosting set-up on
the test set, as an effect of the decision committee being trained on an increas-
ing number of documents. There are different kinds of matches possible,as ex-
plained in section 8.7.1. Figure 12.1 shows that of the erroneous matches, the
number of spurious ones decreases the most, followed by a decrease in num-
ber of missing, and partial matches. After 20 documents have been processed,
the number of incorrect matches made are approximately constant throughout
the remainder of the process. The re-distribution and largest decreaseof erro-
neous matches occur in the first third of the active learning process, in terms
of number of documents processed.

Given the re-distribution of errors, and the fact that the benefits of using ac-
tive learning take place around the point at which the learning curve levelsout
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Figure 12.1: The actual number and types of matches made on the test set as an
effect of the training data available.

(illustrated in, for instance, figure 9.30), it appears harmful to use the classi-
fier under training as a pre-tagger. There is a possibility that the changesmade
by the human annotator to the annotations suggested by the system does not
change over time. As the annotator finds what he believes to be patterns in the
suggestions with respect to the corrections that he should introduce, thereis a
risk that the user sticks to those patterns; for instance, a given word marked as
being a particular type of name might in fact be a spurious match, and should
thus not be marked as a name at all. As described above, the learning process
involves a re-distribution of the errors made by the classifier. There is a risk
that the human pattern matching of errors to appropriate annotations does not
keep up with this re-distribution. Thus, unconditional use of the classifier as a
pre-tagging may, at this stage, prove volatile to the annotation quality.

Hence, using the classifier as pre-tagger for indiscriminately suggesting la-
bels forall tokens in a document during the second phase of the BootMark
method should be avoided as long as the “knee” in the learning curve has not
been cleared.

If, on the other hand, the classifier can be made to suggest labels for only
the tokens of which it is relatively certain, and leave the introduction of labels
for uncertain tokens to the human annotator, then pre-tagging may be feasible
during the second phase of BootMark too. The problem, then, is to decide
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whether the classifier is certain of a predicted label for a token. As in the case
of the stopping criterion described in section 11.2, it is desirable to avoid the
use of pre-defined thresholds for separating certain tokens from uncertain ones;
the user should not be forced to decide on threshold values. Instead, the same
sources of information that form the base for the stopping criterion can be
utilized in order to judge the label for a token as certain. The following is a
sketch of how it can be done: For each token in the document selected by the
system for marking up by the human annotator, use the selection metric value
(for instance, the vote entropy) assigned to it by the committee of classifiers
constructed in the active learning process. Compare the selection metric value
with the validation set agreement value obtained for the held-out unannotated
test set used for deciding when the learning process should be terminated.15

Analogously to the selection agreement used for the stopping criterion, the
selection metric value of each token may be used to relate the agreement of the
decision committee concerning the predicted label of the token to the average
agreement among the committee members regarding the classification of the
validation set. Given that the distribution of relevant instances in the valida-
tion set (in this case sequences of tokens making up names) is the same as the
distribution of instances in the original unlabeled pool of data used for boot-
strapping the classifier, we can say something about the informativeness of the
current token in relation to all other tokens. If the committee agrees more on
the labeling of the current token, than it does on the average labeling of the
validation set, then the label of the token can be considered certain, and may
thus constitute a suggestion to the human annotator. Conversely, if the decision
committee is less in agreement concerning the label of the current token, than
it is about the validation set, then the predicted label should not be displayedto
the annotator. Thus, making use of the same kind of information as underlies
the stopping criterion described in chapter 11, it is possible to decide whether a
predicted label for a particular token in a given document should be suggested
to the user.

Given the cautious way described above to selectively suggest labels to
the user, utilizing the classifier under construction as a pre-tagger duringthe
bootstrapping phase of BootMark appears feasible.

In addition, the selective suggestion of labels addresses the issue of utility of
the BootMark method. Serving the user entire unannotated documents instead
of smaller chunks of data (sentences, for instance) could be thought ofas a
drawback in terms of the workload put on the user; the user would have to

15Note that the selection metric used for computing the informativeness of thetoken under
scrutiny must be the same selection metric as is used to compute the validation set agreement
value; otherwise, the values are incomparable.
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mark up the whole document to get to the instances useful to the learning
process, while in a smaller context, the user would only have to annotate the
immediate surroundings of the informative bits. Even though the description
of the BootMark method makes no assumptions about the interaction between
the system implementing the method and the human annotator operating it, it
is thus possible to supply the technical components necessary for designing
the interaction in such a way that there is little difference, from the user’s point
of view, between using a BootMark-based system that serves the user entire
documents to mark up, and approaches utilizing smaller contexts. In either
case, it will be possible to direct the user’s focus to those tokens marked by the
system as uncertain.

12.3 Implications for the BootMark method

The short answers to the questions posed initially in this chapter are:

• It is not possible to decide on the requirements posed on a pre-tagger
for the BootMark method without conducting empirical investigations
involving real annotators who are working on real annotation tasks.

• Although it is not possible to assess the requirements posed on pre-
tagging for the BootMark method, it is safe to say that it is not suitable to
indiscriminatelyuse pre-tagging with revision during the bootstrapping
process unless the benefits of active learning have been collected, thatis,
the learning process has been terminated. On the other hand, pre-tagging
with revisionmaybe used during the learning phase if only the certain
labels are suggested to the human annotator, and the uncertain ones are
not. This chapter outlines a way to do the latter.
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13SUMMARY AND

CONCLUSIONS

13.1 Summary

This thesis introduces a method – BootMark – for bootstrapping the marking
up of named entities in textual documents and provides in-depth empirical
investigations of a number of issues related to its realization.

The work described is rooted in the observation that it is hard to develop,
maintain, and adapt information extraction systems, as well as the fact that
the methods and tools for addressing these issues more often than not in-
volve machine learning. The quality of the data used for learning puts an upper
limit on the performance achievable. Consequently, high quality data is a pre-
requisite for successfully developing information extraction systems and the
corresponding sub-systems.

13.1.1 Part I – Background

The dissertation consists of four parts. Part I provides the background nec-
essary to understand the rest of the thesis. First, named entity recognition is
presented, followed by an introduction to machine learning in general, and ac-
tive machine learning in particular. In active machine learning, the learner isin
control of the data from which it learns in such a way that it may ask an ora-
cle, typically a human expert, to correctly classify the examples for which the
model learned so far makes the most unreliable predictions. Part I is concluded
by an overview of annotation methods that utilize machine learning, including
active learning, for assisting the human annotator in marking up text.

13.1.2 Part II – Introducing the BootMark method

In part II, the BootMark method is introduced. BootMark consists of three
phases and entails the main contribution of the thesis. The first phase is straight-
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forward, aiming to have the human annotator produce a set of correctly anno-
tated documents pertaining to the task of named entity recognition. The second
phase constitutes the bootstrapping part. It involves active machine learning for
the purpose of selecting which document to annotate next, given the ones al-
ready annotated. In phase three, the classifier learned during phasesone and
two is used in a pre-tagging-with-revision fashion by means of which the re-
maining unannotated documents of the original corpus are marked up. Along
with the description of the BootMark method, a number of emerging issues are
identified and described. Their common denominator is that they all depend on
the realization of the named entity recognition task to which BootMark is to
be applied, and as such, they require the context of a practical setting to be
properly addressed.

13.1.3 Part III – Empirically testing the BootMark method

Part III introduces the specifics of the named entity recognition task in which
the emerging issues resulting from part II are addressed. Data and taskdefini-
tions stemming from a leading venue for information extraction – the Message
Understanding Conference series – is used throughout the empirical tests of
the emerging issues.

13.1.3.1 Issue 1 – Base learner and task characteristics

The first issue subject to investigation in part III is that of deciding on an ap-
propriate learning scheme for named entity recognition. The decisions made
include the definition of the learning task and address questions such as data
representation and algorithm parameter settings, as well as means to evaluate
the learning process.

Nine base learners, in a total of 216 different configurations, are used for
this part of the empirical investigation. When weighing together the classifica-
tion accuracy, training time, and time required to test the classifiers on a token
classification task, a REPTree decision tree configuration proves to be thebest
choice.

13.1.3.2 Issue 2 – Actively selecting documents to annotate

The second issue addressed in part III is that pertaining to the most crucial
requirement of the BootMark method, stating that in order for BootMark to be
applicable to a task, it must be possible to distinguish between the documents
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to annotate by means of active learning. Query by uncertainty, query by boost-
ing, ActiveDecorate, and Co-testing along with a large number of metrics for
quantifying uncertainty and committee disagreement are investigated.

The best active learning results are obtained by query by boosting using
the above-mentioned REPTree configuration for named entity recognition. The
ten members of the decision committee are generated by MultiBoost. Vote
entropy turns out to be superior to all other disagreement metrics investigated,
including Jensen-Shannon divergence, and various margin-based metrics.

13.1.3.3 Issue 3 – The constitution of the seed set

The third issue subject to investigation in part III is the constitution of the set
of documents used to start the BootMark annotation process.

Three ways of assembling the seed set for query by uncertainty, as wellas
for query by boosting, are examined: random sampling, and two ways of K-
means clustering. In all three approaches, the number of documents included
in the seed set is varied between one and ten. In the first clustering approach,
as evenly sized clusters as possible are produced. The documents closest to the
centroids are then selected for inclusion in the seed set. The second approach
to clustering exploits as unevenly sized clusters as possible. Here too, the doc-
uments in the corpus that are the closest to the cluster centroids are used in the
seed set.

The size of the seed set has no impact on the active learning results. Regard-
less of whether one or ten documents are used as a seed, the active learning
curves follow a similar trajectory. Further, random selection of the documents
to include in the set is better than to use any of the two K-means clustering set-
ups. Selecting the seed set from unevenly sized clusters has a negativeeffect
on the classification variance; the standard deviation of the results obtainedin
both query by uncertainty and query by boosting increases.

13.1.3.4 Issue 4 – Monitoring and terminating the learning process

The fourth issue addressed in part III is how to monitor and terminate the active
learning process without having to supply an annotated held-out document test
set.

It is possible to visualize the progress of the learning process without the
use of a designated, annotated, test set. Although the visualization fails to indi-
cate the performance of the classifiers learned, it can be used as an indication
of the learning progress.
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A novel stopping criterion is proposed. It is based on the intrinsic char-
acteristics of the data and the based learner configuration in use, and is thus
not dependent on the user to define thresholds prior to initiating the learning
process. The stopping criterion is defined so that the learning should termi-
nate when the selection agreement for the most informative instance from the
diminishing unlabeled pool used for active learning is larger than the average
agreement concerning the classification of the held out unannotated validation
set. This intrinsic stopping criterion is motivated by the fact that after this point
in the process, the learner would learn more from a sufficiently large random
sample from the validation set, than it would if the examples used for training
were drawn from the remainder of the unlabeled pool of data.

13.1.3.5 Issue 5 – Revision of system-suggested annotations

The fifth and final issue addressed in part III concerns the applicabilityof the
actively learned classifier as a pre-tagger.

Overall, it is concluded that this matter is best settled by conducting a user-
study involving real annotators working on a real named entity recognition
task. However, it is also argued that the classifier learned by means of active
learning is as good a pre-tagger as one learned by random sampling if it is used
for pre-tagging once the benefits of active learning are collected. Thatis, the
classifier may be used as a pre-tagger once the active learning processhas been
terminated.

Additionally, a sketch of how the tagger can actually be utilized for pre-
taggingduring the active learning process is presented. It involves suggesting
labels for those tokens for which the classifier is certain, and leave the labeling
of the uncertain ones to the human annotator. The certain versus uncertainissue
can be settled by using the same information that is used for terminating the
active learning process.

13.1.4 Part IV – Wrapping up

Finally, part IV comprises the summary you are currently reading, as well as
concluding remarks and future directions.

13.2 Conclusions

The thesis (section 1.1) states that the BootMark method requires a human an-
notator to manually mark-up fewer documents in order to produce a named
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entity recognizer with a given performance, than would be needed if the docu-
ments forming the base for the recognizer were randomly drawn from the same
corpus.

The results reported in chapters 8, 9, 10, and 11 support the thesis: Phase
one and phase two of the BootMark method indeed reduce the number of doc-
uments a human user has to annotate to facilitate the training of a named entity
recognizer competitive or superior to a recognizer trained on randomly se-
lected documents. However, the BootMark method is not at all guaranteed to
produce better results than those achieved by random selection followed by
manual annotation. The applicability of the proposed bootstrapping method
hinges on the ability to distinguish between documents by means of actively
learning to classify the named entities contained in them.

13.3 Future directions

While the thesis (section 1.1) is covered by this dissertation, there are a number
of interesting questions remaining regarding matters that are not immediately
within the scope of the thesis. Hence, this final section serves the purposeof
sketching lines along which the current work may be extended.

13.3.1 Further investigating pre-tagging with revision

The questions raised in conjunction with the use of the named entity recog-
nizer as a pre-tagger, discussed in chapter 12, require further investigations to
be satisfactorily answered. Thus, it will be necessary to specify and conduct
a proper named entity annotation task such as the first one outlined in sec-
tion 13.3.2, involving real annotators. In the context of such an experiment,
the matter of interaction between the annotators and a system implementing
the BootMark method will also require attention. In particular, future work
should seek to verify the utility of displaying entire documents to the user in-
stead of displaying sentences, which is the usual way in active learning for
named entity recognition.

Analogous to the document centered approach outlined by Mikheev (2000),
the working hypothesis in an experiment on the matter will be that displaying
entire documents, as opposed to sentences, may well facilitate easier disam-
biguation of otherwise hard instances. Under the assumption that a given name
is used to address a particular entity within the scope of a document, the oc-
currence of several hard examples within a document can be collapsed toone.
Also, if the display of entire documents is combined with the way of suggest-
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ing labels only for those tokens for which the classifier is certain (proposed in
chapter 12), the overhead of using a document-based approach may, from the
user’s point of view, be reduced to that of displaying sentences.

13.3.2 Other languages, domains and tasks

Another natural extension of the work is to investigate the applicability of
BootMark to other languages, domains and tasks.

As previously stated, the applicability of the BootMark method hinges on
the possibility to judge one document as more informative than another based
on the named entities therein. It is imperative that this constraint permeates
any attempts to apply BootMark to languages, domains and tasks other than
the ones used in this thesis. Ultimately, the successful realization of BootMark
depends on the characteristics of the task and data at hand. The task, its repre-
sentation, the learning scheme configuration, and the way that active learning
is set-up all influence the final result, most likely even more so than the lan-
guage or domain from which the task and data stem. Thus, while the question
of whether BootMark is applicable to a certain language is a perfectly reason-
able one, its answer depends on the specifics of the given data and task,and
the answer thus cannot, with certainty, be generalized to cover all tasks and
all data in that particular language. Of course, the same is true for questions
regarding the issues of the applicability of BootMark to other domains and
tasks as well. In other words, the realization of the BootMark method is so
dependent on the data and task at hand that a simple “yes” or “no” as answer
to the question “Is BootMark applicable to Swedish?” does not mean anything
unless the answer is also qualified by the details of the choices made in the
implementation of the issues touched on in this thesis. Hence, it does not make
much sense to investigate the applicability of BootMark to languages, domains
or tasks in isolation. That said, combinations of new languages, domains and
tasks on which I would like to try BootMark include:

• Anonymization of Swedish medical records. The task in this setting is
to recognize named entities, mostly person names, in Swedish texts. The
outcome would be a corpus of medical records in which the names of
persons have been removed. Thus, the task is similar to the one pursued
in the thesis, while the domain and language are not.

• Co-reference annotation in English news wire texts. The purpose is to
investigate whether BootMark can be applied to a task which is different
from that of named entity recognition, but still important to the realiza-
tion of information extraction systems. The outcome would be a corpus
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annotated with co-reference information. In this case, the task is differ-
ent to the one in the thesis, while the domain and language are not.

If the application of BootMark to the above combinations prove successful,
the realization of BootMark using cost sensitive active learning, as described
in section 13.3.3, is next on the agenda.

13.3.3 From exploitation to exploration

Active learning, as it is used here, exploits the documents processed so far to
facilitate informed decisions regarding which document to process next. What
if the bootstrapping phase of BootMark would incorporate means to make the
annotation process sensitive to the curiosity of an external source, such as the
oracle? The annotation process should not be guided solely by the search for
the most informative document to annotate, but should allow for a change of
focus in mid-process. The realization of this kind of cost-sensitive activelearn-
ing could facilitate the transformation from exploitation to active learning as
exploration. An immediate practical use for cost sensitive – exploratory – ac-
tive learning is to “unskew” the distribution of named entities in an otherwise
severely skewed corpus by sampling from the corpus in such a way that the
name distributions appear similar to the learner. The purpose would be to learn
a named entity recognizer that is equally well equipped to handle names of dif-
ferent types. Such a recognizer would be more suitable to use as a pre-tagger in
the final phase of BootMark due to its supposed ability to annotate documents
more consistently.

Cost sensitive active learning operating at the document level would open
up for a range of interesting applications. For instance, the support of anno-
tation for several tasks simultaneously such as named entity recognition, the
annotation of relations between entities, and co-reference resolution. Byallow-
ing the different tasks to take precedence at different times, that is, to allow for
the switching of focus during the annotation process, the resulting annotated
corpus can be made to contain controlled distributions of the various target
concepts.

13.3.4 The intrinsic stopping criterion

Although the novel stopping criterion for pool-based query by committee pre-
sented in chapter 11 appears to work for the task of actively selecting docu-
ments to annotate with named entities, its applicability to other active learning
settings remains an issue for future investigations. For instance, the selection
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agreement and validation set agreement curves obtained in “ordinary” active
learning for the purpose of creating named entity recognizers will be examined
to see if they exhibit the desired characteristics.

An initial investigation of the applicability of the intrinsic stopping criterion
to additional active learning scenarios is presented by Olsson and Tomanek
(2008).
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A BASE LEARNER

PARAMETER SETTINGS

The subject matter of this appendix is the base learner parameter scope and
settings as explored and used in conjunction with the single token classifica-
tion task described in chapter 8. The parameters are to be understood as the
options set in Weka when defining the experiments in the Weka Experiment
environment (Witten and Frank 2005). The commands in the listings have
been cleaned up in order to increase readability, thus they do not constitute
valid Weka command lines, in particular, the seeds that are set automatically
by Weka have been removed.

A.1 Parameter scope

This section contains information about the scope of the parameters used for
the base learners employed in the single token classification task described in
chapter 8. Each subsection lists all parameters and their values for a given base
learner. In addition to the configurations listed in this section, the two feature
selection methods – Consistency-based feature selection and correlation-based
feature selection – are invoked for each of the configurations, but the actual
command lines are omitted, since listing those would merely mean repeating
all configurations two times without actually adding or altering parameters.

In general, a number of parameter settings were tried out for each base
learner on a small subset of the data in order to form an image of the influence
of the parameters on classifier performance. The settings deemed interesting
due to the resulting fluctuations in performance were then further investigated
in full experiments involving all data.

In total, 216 combinations of base learners, parameter settings, and data
sets were tested.
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A.1.1 trees.REPTree

• trees.REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1

• trees.REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1 -P

• trees.REPTree -M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• trees.REPTree -M 2 -V 0.0010 -N 6 -S 1 -L -1 -P

• trees.REPTree -M 2 -V 0.0010 -N 2 -S 1 -L -1

• trees.REPTree -M 2 -V 0.0010 -N 6 -S 1 -L -1

A.1.2 trees.J48

• trees.J48 -C 0.25 -M 2

• trees.J48 -C 0.05 -M 2

• trees.J48 -C 0.5 -M 2

• trees.J48 -S -C 0.25 -M 2

A.1.3 functions.RBFNetwork

• functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

A.1.4 functions.Logistic

• functions.Logistic -R 1.0E-8 -M 50

• functions.Logistic -R 1.0E-8 -M 100

• functions.Logistic -R 1.0E-8 -M 200

A.1.5 bayes.NaiveBayes

• bayes.NaiveBayes -K

• bayes.NaiveBayes -D

A.1.6 bayes.NaiveBayesUpdateable

• classifiers.bayes.NaiveBayesUpdateable
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A.1.7 rules.PART

• rules.PART -M 2 -C 0.25 -Q 1

• rules.PART -M 6 -C 0.25 -Q 1

A.1.8 rules.JRip

• rules.JRip -F 3 -N 2.0 -O 2 -S 1

• rules.JRip -F 3 -N 2.0 -O 2 -S 1

• rules.JRip -F 6 -N 2.0 -O 4 -S 1

A.1.9 lazy.IBk

• lazy.IBk -K 5 -W 0 -I -A weka.core.KDTree -A weka.core.EuclideanDistance
-W 0.01 -L 40

• lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

A.2 Time to train

The listing in this section corresponds to the base learner listing in table 8.6 in
chapter 8 such that each item in the list below provides elaborate information
about the corresponding base learner entry in the table.

• lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

• bayes.NaiveBayesUpdateable

• bayes.NaiveBayes-K

• trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1

• functions.Logistic -R 1.0E-8 -M 50

• trees.J48-C 0.25 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5 -
W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.J48-C 0.5 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.Logistic -R 1.0E-8 -M 50

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayes-D
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• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.PART -M 2 -C 0.25 -Q 1

• functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• rules.PART -M 6 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.JRip -F 3 -N 2.0 -O 2 -S 1

• rules.JRip -F 3 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.Eucli-
deanDistance

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.J48-C 0.25 -M 2

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.Logistic -R 1.0E-8 -M 100

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.PART -M 2 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.JRip -F 3 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

A.3 Time to test

The listing in this section corresponds to the base learner listing in table 8.7 in
chapter 8 such that each item in the list below provides elaborate information
about the corresponding base learner entry in the table.

• trees.REPTree-M 2 -V 0.0010 -N 3 -S 1 -L -1 -P

• trees.J48-C 0.05 -M 2

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.J48-C 0.25 -M 2
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• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.J48-C 0.5 -M 2

• rules.JRip -F 6 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.REPTree-M 2 -V 0.0010 -N 3 -S 1 -L -1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.JRip -F 6 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.JRip -F 6 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.PART -M 2 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.PART -M 6 -C 0.25 -Q 1

• rules.PART -M 6 -C 0.25 -Q 1

• functions.Logistic -R 1.0E-8 -M 100

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.Logistic -R 1.0E-8 -M 200

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.Logistic -R 1.0E-8 -M 100

• bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayesUpdateable

• functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• bayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W lazy.IBk -K 5 -W 0 -I -A weka.core.KDTree -A weka.core.Euclidean-
Distance -W 0.01 -L 40
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• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.Eucli-
deanDistance

• lazy.IBk -K 5 -W 0 -I -A weka.core.KDTree -A weka.core.EuclideanDistance
-W 0.01 -L 40

A.4 Accuracy

The listing in this section corresponds to the base learner listing in table 8.8 in
chapter 8 such that each item in the list below provides elaborate information
about the corresponding base learner entry in the table.

• rules.JRip -F 3 -N 2.0 -O 2 -S 1

• rules.PART -M 2 -C 0.25 -Q 1

• trees.REPTree-M 2 -V 0.0010 -N 3 -S 1 -L -1 -P

• trees.J48-C 0.5 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.J48-C 0.5 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.PART -M 2 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5 -
W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

• lazy.IBk -K 5 -W 0 -I -A weka.core.KDTree -A weka.core.EuclideanDistance
-W 0.01 -L 40

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W trees.J48-C 0.5 -M 2

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.PART -M 2 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.Eucli-
deanDistance

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.JRip -F 6 -N 2.0 -O 4 -S 1

• functions.Logistic -R 1.0E-8 -M 200

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayes-D
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• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W rules.JRip -F 6 -N 2.0 -O 4 -S 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayes-D

• bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.Logistic -R 1.0E-8 -M 50

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.Logistic -R 1.0E-8 -M 100

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -Wbayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayesUpdateable

• bayes.NaiveBayesUpdateable

A.5 Combined results

The listing in this section corresponds to the base learner listing in table 8.9 in
chapter 8 such that each item in the list below provides elaborate information
about the corresponding base learner entry in the table.

• trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• trees.J48-C 0.05 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.J48-C 0.5 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• rules.JRip -F 3 -N 2.0 -O 2 -S 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.PART -M 2 -C 0.25 -Q 1

• rules.PART -M 6 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.J48-C 0.25 -M 2

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.JRip -F 3 -N 2.0 -O 2 -S 1
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• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W trees.REPTree-M 2 -V 0.0010 -N 2 -S 1 -L -1 -P

• functions.Logistic -R 1.0E-8 -M 100

• lazy.IBk -K 5 -W 0 -I -A weka.core.KDTree -A weka.core.EuclideanDistance
-W 0.01 -L 40

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5 -
W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

• bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.Logistic -R 1.0E-8 -M 50

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.PART -M 2 -C 0.25 -Q 1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayes-D

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W rules.JRip -F 6 -N 2.0 -O 2 -S 1

• bayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayesUpdateable

• functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5 -
W lazy.IBk -K 2 -W 0 -A weka.core.LinearNN -A weka.core.EuclideanDistance

• meta.AttributeSelectedClassifier-E ConsistencySubsetEval-S BestFirst -D
1 -N 5 -W functions.Logistic -R 1.0E-8 -M 100

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W bayes.NaiveBayesUpdateable

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1

• meta.AttributeSelectedClassifier-E CfsSubsetEval-S BestFirst -D 1 -N 5
-W functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1
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