
Talkmail

Group ai05-7

Dana Doytch Joakim Evers

cl2ddoyt@cling.gu.se evers@etek.chalmers.se

Calle Håkansson Mattias Sandsäter
e0calle@etek.chalmers.se mattiass@dtek.chalmers.se

Supervisor: Reiner Hähnle

Artificial Intelligence VT-2005
Chalmers

Gothenburg's University

Abstract
This paper describes an English dialogue system for a mail program, Talkmail. The system
has been developed to enable mail users to interact with their mail program by using natural
language instead of GUI interaction; even such users who don't necessary have previous
experience of natural language processing technology or computers. The aim is to increase the
functionality of the program so it could connect to a mail client and allow interaction by
speech. In this paper we describe the different parts in a conventional dialogue system and
show how we applied these in our system.

Keywords: dialogue, utterance, recognition, natural language processing.

Contents
1. Introduction and purpose.. 1
2. The program design.. 2

2.1 Our application... 2
3. Theory .. 3

3.1 Dialogues and dialogue systems .. 3
3.2 Syntactic interpretation .. 3
3.3 Semantic interpretation .. 3
3.4 Pragmatic interpretation ... 3
3.5 Task handling and generation .. 4
3.6 Memorization ... 4

4. The application implementation... 5
4.1 Dialogues in Talkmail .. 5
4.2 Syntactic interpretation .. 6
4.3 Semantic interpretation .. 7
4.4 Pragmatic interpretation ... 7
4.5 Command handling and generation.. 7
4.6 Memorization ... 8

5. Discussion .. 9
6. Future work .. 10
7. References .. 11
8. Appendix .. 11

1. Introduction and purpose
PDAs and other small computers are increasingly difficult to control with input devices such
as miniature keyboards or touch screens. People with different disabilities can also take
advantage of this system which only uses a speech interface. These devices can easily be
replaced by speech controlled devices that allow users to communicate with our programs.
For this cause, computers must be able to understand and process natural languages by
mapping text to meaning.

Natural language understanding (NLU) has been characterized as a process of hypothesis
management in which the linguistic input is sequentially scanned as the system considers
alternative interpretations. NLU main concerns include ambiguity, under-specification and ill-
formed input.

Our task is to design a reasonable architecture for a specific domain that should work as an
additional input device instead of a keyboard, a pen or a mouse. The program should be able
to recognize and understand natural languages in form of a text string as its input and should
also generate a proper output based on the input interpretation. We choose to implement a
dialogue system for a mail domain, assuming that such interface will be essential as many of
us daily interact with our mail program.

Page: 1/11

2. The program design
Our application is thought to enable users to interact with their mail program by natural
languages. In order to accomplish this goal we constructed an application that can understand
and process natural languages.

The first goal was to clarify how naïve users would interact with a written/spoken dialog
system covering the mail domain, which word sequences are common to apply to a desirable
command, and what are their possible interpretations. After the first goal was established we
could define the vocabulary and construct the suitable grammar which our parser will use to
generate the text input from the user.

It was inevitable to set some limitations to the program so we could follow a certain standard,
some of which are the following:

 The system always initiates the main dialogue.
 The commands that the system will accept and be able to perform are: receive mail,

read mail, reply to a specific mail and compose new mails.
 Every dialogue has a goal which the system will try to achieve.
 One has to finish or abort the current state; it’s not allowed to work with two

concurrent states.

We defined the different attributes that every command must or may require before it can be
completed. For instance the compose command consists of three obligatory attributes that are
requested by the system before the command can be executed, namely: sender, subject and
message. An optional attribute in this command is attachment.

2.1 Our application
Following our goals and restrictions we designed the following structure for the application as
figure 1.

ANSWER

PARSER

SEMANTIC

MAIL COMMAND

RESULT

GLOBAL MEMORY

GRAMMAR

LEXICON

LOCAL MEMORY

QUESTION

Figure 1: Our application

MAIL INTERFACE

Page: 2/11

3. Theory
3.1 Dialogues and dialogue systems
Dialogue is an interactive exchange of meaningful utterances, in this case between a human
and a computer using natural language. Dialogue systems make it possible to establish goals
and perform computer tasks, such as executing different computer commands like open a
certain catalog, search for documents and ask for the time and date.

The basic idea is that every command is followed by a response from the system. The
commands typically consist of one major action denoting term plus any number of optional
and mandatory flags. The top-level functionality of dialogue systems naturally falls into a
sequence of conceptual phases of execution in a fairly standardized way. The following
sequence [3.2-3.6] is considered a “standard” sequence of phases when building a domain
specific dialogue system.

3.2 Syntactic interpretation
A syntactic interpretation is a linguistic analysis of the user utterance. The syntactic analyzer
performs dictionary lookup from the system's lexical source and applies syntactic rules to
these word descriptions. The result of this process, which is called syntactic parsing, is
declarative descriptions of the syntactic content (subject, object, adverbials, etc.) of each
proposed sentence or sentence fragment. This phase typically contains a call to one or more
parsers.

3.3 Semantic interpretation
A semantic interpretation is a linguistic analysis of the user utterance. The semantic
interpretation produces semantic representations which will be sent to a reasoning module or
database which decide the system's reactions. If the input is semantically ambiguous the
module will often use statistical knowledge, experience from previous dialogs (case-based
learning) in order to choose the most appropriate interpretation. Because it can be appropriate
in certain system designs to allow the user to choose among a set of interpretations, the
disambiguating effort is optional.

3.4 Pragmatic interpretation
Pragmatic interpretation is refined interpretation of user input based on dialogue context.
Typically it is a collection of algorithms using dialogue memory to add/change information in
the interpreted structure. When a sentence is parsed and given a semantic interpretation, the
relationship between this interpretation and the information previously expressed in the text as
well as the interpreter's general knowledge must be established. Establishing this relationship
comes under the general heading of pragmatic interpretation. The particular problems that are
solved during this step include:

1. Making explicit information that is only implicit in the text. This includes, for
example, explicating the relationship underlying a compound nominal, or explicating
causal consequences of events or states mentioned explicitly in the text.

2. Resolving anaphoric references and implicit arguments.
3. Viewing the text as an instance of a schema that makes its various parts coherent.

Page: 3/11

3.5 Task handling and generation
The transformation of an internally represented “system move” to a suitable surface sentence
format and/or multimedia-format for the (multimedia) GUI. Typically this phase uses one or
more generation filters, e.g. sentence-planning and surface-generation.

3.6 Memorization
The dialogue memory consists of three layers of dialog structure:

1. An intentional structure representing dialogue phases.
2. A thematic structure representing the order in which information has been given.
3. A referential structure keeping track of lexical realizations.

Page: 4/11

4. The application implementation
The application is implemented in Java 1.5.

Our dialogue system uses a collection of natural language processing modules for English.
When the user enters a sentence, it is first processed by a sentence parser, using a combined
grammar and a lexicon of English. The result of the parsing is a set of syntactic structures,
each associated with a semantic representation of the sentence. The memory module helps to
predict (computes) how much of these semantic representations could be incorporated into the
current dialogue context. After the semantic module has disambiguated the syntactic
structures which are not suitable to use, it will update the dialogue context and decide what to
say in response using information from the context and its own private knowledge of facts and
goals.

4.1 Dialogues in Talkmail
A message can consist of any possible combination of words and symbols and even non
grammatical sentences which will not be accepted by the parser. To solve this problem we
decided to incorporate a special sign which marks the message. We choose the hash sign for
this and everything between two hash signs is by the parser considered as a single noun.

Dialogue A;1
s - What do you want to do my lord?
u - compose a mail
s - Who do you want to send the mail to?
u – anna@gu.se
s - What subject do you want for the mail?
u - #a meeting on Friday#
s - What message do you want to send?
u - #i wanted to remind you about our meeting this Friday#
s - This is the current information:
state = compose
receiver = anna@gu.se
subject = a new meeting on Friday
message = i wanted to remind you about our meeting this Friday
lastquery = execute
s - Do you want to execute command?
u - yes
s - Executing command...

Dialogue A;2
s - What do you want to do my lord?
u - check mail
s - This is the current information:
state = receive
lastquery = execute
s - Do you want to execute command?
u - yes
Executing command...
You have: 20 new mail(s)
from: anders with subject: Textil och konfektion

Page: 5/11

……
from: rune with subject: huller om buller
from: lotta with subject: roliga människor
from: rune with subject: Textil och konfektion

Dialogue A;3
s -What do you want to do my lord?
u - reply
s - What message do you want to send?
u - #ai project#
s - This is the current information:
state = compose
receiver = rune
subject = RE: Textil och konfektion
message = ai roject
lastquery = execute
s - Do you want to execute command?
u - yes
s - Executing command...
to: rune
from: Reiner
date: Fri Jun 03 18:02:14 CEST 2005
subject: RE: Textil och konfektion
message: ai roject
attachment: null

4.2 Syntactic interpretation

4.2.1 Syntactic Parsing
Parsing can be viewed as a search problem. Two common architectural metaphors are top-
down (starting with the root S and growing trees down to the input words) and bottom-up
(starting with the words and growing trees up toward the root S). For our purpose we chose to
implement the Earley’s algorithm, which is a top-down dynamic algorithm. It uses a table of
partial parses to efficiently parse ambiguous sentences. The algorithm is considered to be the
most efficient possible context-free parsing algorithm, including both the top-down and
bottom-up variety.

The items of Earley’s algorithm are of the form [i, A → α • β, j] where α and β are strings in the
vocabulary (in our lexicon) and A → α β is a production (a rule) of the grammar. The j index
provides the position in the string that recognition has reached, and the dot position marks that
point in the partial sentential form. The i index marks the starting position of the partial
sentential form, as we localized attention to a single production.

In top-down parsing, we keep a partial sentential form for the material yet to be parsed, using
the dot at the beginning of the string of symbols to remind us that these symbols come after
the point that we have reached in the recognition process. In bottom-up parsing, we keep a
partial sentential form for the material that has already been parsed, placing a dot at the end of
the string to remind us that these symbols come before the point that we have reached in the
recognition process. In Earley’s algorithm we keep both of these partial sentential forms, with
the dot marking the point somewhere in the middle where recognition has reached. The dot
thus changes from a mnemonic to a necessary role. The algorithm uses a random access

Page: 6/11

model, include an upper bound on time proportional to n3, with n standing for the length of
string being parsed. It has two major advantages which are:

1. It does not require a special form for the grammar.
2. The algorithm can parse at n2 given unambiguous input.

4.2.2 Dictionary lookup and grammar rules
Our context-free grammar is simple enough to allow the construction of efficient parsing
algorithms which for a given string determine whether it can be generated from the grammar.
The grammar consists of a set of rules where every rule contains a left hand-side (a non
terminal symbol) and a right hand-side (a sequence of non terminal and terminal symbols).
The context-free grammar is important because it is powerful enough to describe the syntax of
computer languages. It uses a predefined lexicon which is written for this purpose. In our
lexicon we include information about the word class and its interpretation, for instance the
verbs: send, compose, write and create have the same interpretation namely, compose.

4.3 Semantic interpretation
Semantic interpretation is the linguistic analysis of meaning. Since a phrase can have several
valid meanings, the semantic interpretation is important to distinguish the most probable of
them. Our semantic is an operational semantics i.e. a certain action (verb) is defined
according to its operational aspects (the attributes required in order for it to operate).
This module uses the dialogue and the global memory to store new information and keep
track on the information not yet given. The knowledge stored in the memory is also used to
understand the user intention (disambiguate the meaning of an utterance) and to match
correctly the input utterance to the different attributes.
The semantic module constantly updates the two memories with new information that is
relevant for the current dialogue task.

4.4 Pragmatic interpretation
The phrase coming into the semantic module can have many possible meanings and we want
to find the most probable interpretation. In our system the tree structure of the sentence helps
us decide on one interpretation which provides most information in the current dialogue, this
information is based on the information in the memory.

A state is a mode bound to a specific set of commands, for example "compose mail" and "read
mail". Every state has information on what it needs to be complete. When a state is complete
it can be executed by a command. The semantic analysis finds out what state it is in by verb
keyword search and ask questions to find out the answer to the compulsory information in that
specific state.

If the phrase does not contain a verb, it is interpreted as an answer to the last given question.
Otherwise, if a verb is found and it is associated with another state, the system asks if the user
want to abort the current command. Our semantics does not operate multiple states
simultaneous due to the complexity of referenced words. The semantic module always
searches for information needed in the current state. The extraction searches for the specific
information by analyzing word classes and connecting words that belong to each other. All
relevant information to the state is stored in the dialogue memory.

4.5 Command handling and generation
The command module uses a mail interface to connect to the mailbox in which it fetches
mails and send mails. Every dialogue has commands bound to it which executes when the

Page: 7/11

user wants to and the state is complete. The results of the commands are stored in the global
memory for further reference.

Due to our mail interface, the application is able to use whatever mail application the user
wants by only making an interface to that particular mail application. We have implemented a
mail client (Coolmail) which simulates a mail inbox. It continually posts mail to the inbox.

4.6 Memorization
We have two kinds of memories, one dialogue memory and one global memory. The dialogue
memory has information about the current state and all information that the state is interested
in. The dialogue memory is erased when the user has executed a command. The global
memory, on the other hand, is always present and never deleted. It contains references to
words like "last mail". We implemented the memory this way so that information will not
have to be repeated and anaphoric references could be used during the dialogue. Storing
information from previous actions in the dialogue helps to avoid conflicts and decrease
ambiguity, so dialogues could interact more naturally.

Page: 8/11

5. Discussion
With some linguistic background and knowledge about dialogue systems we designed a
framework for a dialogue system suitable for a mail interface. Following the standard
sequence of phases we constructed a general structure of the system that can be extended and
increased. The grammar and lexicon is designed user friendly by means that a certain
command is not bound to a specific utterance. A one and same command can be interpreted in
different ways by different users. However our natural language interface may not cover the
fully desired vocabulary and some users might be irritated by a missing functionality or an
unknown word. This problem can be easily overcome by updating the grammar and the
lexicon in order to allow various commands and functionalities.

There are some limitations in our semantics; the semantic and pragmatic parts do not resolve
anaphoric references. This however does not impose any serious limitations to our program,
so we consider it a minor flaw.

The program was developed iteratively; it can easily be increased by adding new
functionalities to it.

Page: 9/11

6. Future work
We hope to increase the program with available commands and connect it to a speech
recognizer and speech synthesizer. The goal is to connect this program to a real mail client so
it is available for other users and thereby increase its efficiency by manipulating the users
perception of the system. Before this can be accomplished, some changes and updates must be
considered, some of which are:

1. Increase the program with other commands that exists in mail programs today, such
as: add/delete address book, sort messages by name and date.

2. Implement the semantic module so it allows anaphoric references and can deal with
bigger amount of commands and requests.

Page: 10/11

7. References
 Stuart Russell, Peter Norvig; Second Edition. Artificial Intelligence: A Modern

Approach. Prentice Hall 2003.
 Daniel Jurafsky, James H. Martin: Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice-Hall, 2000. ISBN 0-13-095069-6.

8. Appendix
http://www.etek.chalmers.se/~evers/ai/api/

Page: 11/11

	1. Introduction and purpose
	 2. The program design
	2.1 Our application
	 3. Theory
	3.1 Dialogues and dialogue systems
	3.2 Syntactic interpretation
	3.3 Semantic interpretation
	3.4 Pragmatic interpretation
	3.5 Task handling and generation
	3.6 Memorization

	 4. The application implementation
	4.1 Dialogues in Talkmail
	4.2 Syntactic interpretation
	4.2.1 Syntactic Parsing
	4.2.2 Dictionary lookup and grammar rules

	4.3 Semantic interpretation
	4.4 Pragmatic interpretation
	4.5 Command handling and generation
	4.6 Memorization

	 5. Discussion
	 6. Future work
	 7. References
	8. Appendix

