Towards multilingual text generation from structured formal representations

Dana Dannélls

NLP Research Unit
Department of Swedish Language
University of Gothenburg
Graduate School of Language Technology (GSLT)
dana.dannells@svenska.gu.se

October 21, 2009
1. Introduction

2. Research problems and goals

3. Language resources and data

4. Methodology and proposed experiments

5. State of the work
What is Natural Language Generation (NLG)
- the process of mapping internal representations of information into human languages whether textual or spoken
 - Input: non-linguistic source of information
 - Output: written documents, summaries, reports, etc.
- aims to develop a computational theory of human language ability

Multilingual language generation (MLG)
- produce texts automatically in various languages
- an alternative approach to machine translation
A problem of decision making under multiple constraints:

- propositional knowledge at hand
- linguistic tools available
- communicative goals and intentions to be achieved
- audience the text is aimed at
- present and past discourse
NLG system architecture

- Text planner
 - Content determination
 - Discourse planning

- Sentence planner
 - Sentence aggregation
 - Lexicalization
 - Referring expression generation

- Linguistic realisation
Computational approaches

- **Text planning**
 - Rhetorical Structure Theory (Mann and Thompson, 1988)
 - Schema-based (McKeown, 1985)
 - Machine learning and statistical (Barzilay et al., 2002)

- **Sentence planning**
 - Semi-automatic (Shaw, 1998; Dalianis, 1996)
 - Statistical (Zhong and Stent, 2003; Belz et al., 2007)
 - Corpus based (Karamanis and Mellish, 2005)

- **Linguistic realisation**
 - Template based (Busemann and Horacek, 1998; McRoy et al., 2003)
 - Grammar based (Goldberg et al., 1994; Bateman et al., 1998)
 - Hybrid (Williams et al., 2007)
NLG system architecture (Reiter and Dale, 2000)

Goal

Text Planner

Text Plan

Sentence Planner

Sentence Plan

Linguistic Realizer

Surface Text
Rest on the Hunt was painted by Jan Miel (1599-1664) in 1642. The Ghm68, catalogued 1660, belongs to Martin Heade’s collection that is located in Amon Carter Museum, Texas.
A message forms an abstraction that mediates between the data structures used in the underlying application and the eventual texts to be generated.

```
message -id: CreationMsg
relation: WAS_CREATED_BY
  arg1: Ghm68
  arg2: JanMiel
```

A was created by message.
Rest on the Hunt was painted by Jan Miel (1599-1664) in 1642.
In linguistics, aggregation is the compositional building of a linguistic structure of a sentence. Coordination, extraction, ellipsis, focus, centering, discourse and lexical semantics.

In computational linguistics, aggregation is an organizing principle that takes place on different levels. Coordination, subordination, omission, substitution, combination, organization.
The traditional notion of Ontology

- a branch of metaphysics which aims to discover what entities exist and attempts to sort these entities into categories
- built from the Greek forms onto- 'of being' and logos 'speech, reason'
An ontology is an explicit specification of concepts and the relations among them. It provides a shared understanding of some domain of interest and a formal vocabulary for information exchange. (Gruber, 1993)

Some types of ontologies
- Top level ontologies
- Domain ontologies
- Linguistic ontologies

The richness of their internal structure
- Lightweight: concepts, relationships and properties
- Heavyweight: lightweight + axioms and constraints
The Semantic Web (Berners-Lee et al., 2001)

- give information explicit meaning that machines can understand
- support a distributed Web at the level of the data rather than at the level of the presentation
- using global references called Uniform Resource Identifiers (URI)
Semantic Web modeling languages

- The Resource Description Framework (RDF) provides meta-data about Web resources

- RDF Schema (RDFS) defines the primitives for creating ontologies
The Web Ontology Language (OWL)

- contains a richer set of operators
 - inverseOf, sameAs
 - unionOf, complementOf, intersectionOf
- has computational properties for reasoning systems
- different levels of expressivity
 - OWL Lite
 - OWL DL (Description Logic)
 - OWL Full
provide a wide variety of modeling capabilities for relating and presenting different kinds of information

offer an unlimited amount of high level semantic specification

information access to distributed repositories

provide a basis for the underlying textual content

```
crm:P97293 rdf:subject cidoc-crm:Householder ;
    rdf:predicate cidoc-crm:represents ;
    rdf:object cidoc-crm: MariaBanck.
```

expose semantic web services directly in response to natural language queries, i.e., SPARQL
NLG from Semantic Web ontologies

- **RDF/XML** (Wilcock, 2003)
 - spoken summaries and explanations
- **DAML+OIL** (Wilcock and Jokinen, 2003)
 - dialogue responses
- **RDF/OWL – MIAKT** (Bontcheva and Wilks, 2004)
 - textual summaries
- **RDF/OWL – ONTOSUMM** (Bontcheva, 2005)
 - textual summaries, oriented towards the user
- **OWL – ILEX** (O’Donnell et al., 2001)
 - personalised object descriptions
- **OWL-DL** (Mellish and Pan, 2008)
 - focus on content selection
Painting_6384 has title Autumn. Painting_6384 was created by Gilbert Stuart. Painting_6384 has location Gothenburg Artmuseum.

This painting is titled Autumn, it was painted by Gilbert Stuart and it is located in Gothenburg Artmuseum.
1. Introduction

2. Research problems and goals

3. Language resources and data

4. Methodology and proposed experiments

5. State of the work
Currently available NLG components suffer from one or more of the following problems:

- sentence planning is usually embedded in a system and cannot be re-used by other applications;
- existing approaches to sentence planning do not take advantage of the full expressive power of language;
- systems employ direct verbalisation that is close to the ontology structure;
- aggregation has been employed in relatively simple forms using superficial approaches;
- systems that generate from Semantic Web ontologies are monolingual.
The research goals

The primary goal
To develop a sentence planner that is able to make linguistically motivated decisions in manipulating non-linguistic abstract representations.

The secondary goal
To develop a module that uses Semantic Web ontology representations and is capable of utilizing some of the expressive power of Semantic Web languages.

Our guiding hypothesis is that aggregation possibilities are different in different languages.
1. Introduction
2. Research problems and goals
3. Language resources and data
4. Methodology and proposed experiments
5. State of the work
Resources required for generation

- Domain ontology
- Discourse plan
- Lexicon
- Grammar
The domain ontology

The CIDOC Conceptual Reference Model (CIDOC CRM), developed by the International Committee for Documentation (CIDOC) of the International Council of Museums (ICOM) (Crofts et al., 2008).

- ISO standard since 2006
- Based on data structures in museum applications
- It contains 87 classes and 260 relationships
- Available in OWL
The CIDOC-CRM
Discourse plan (McKeown, 1985)

- Impose a discourse structure upon occurring sets of predicates
- A rhetorical schema describes the discourse structure
- Rhetorical predicates characterize the predicting acts a speaker may use for making different statements

Description schema:

Describe–Object \rightarrow

Identification–Property,

Attributive–Property.

Identification–Property \rightarrow

\{ $T1 / \{ T2 / T3 \}$ \}.

Attributive–Property \rightarrow

\{ $T4 / T5$ \}.
Template specifications:

[T1] (a) object’s title | (b) object’s creator | (c) creation date
[T2] (a) creator date of birth | (b) creator date of death
[T3] (a) object id | (b) object material | (c) object size
[T4] (a) owner | (b) location | (c) catalogue date | (d) collection
[T5] (a) object’s identifier | (b) identified place

Example:

[T1b] Thomas Sully painted this half-length [T1a] Portrait of Queen Victoria [T1c] in 1838. The subject is now installed in the [T4d] Wallace Collection, [T4b] London.
Swedish
The PAROLE and SIMPLE lexicons (Lenci et al., 2000)

English
WordNet and FrameNet (Fillmore et al., 2003)

Hebrew
WordNet (Ordan and Wintner, 2005)
The Grammatical Framework (GF)

A functional grammar formalism, oriented towards multilingual grammar development and generation (Ranta, 2004).

Differentiates between domain dependent and domain independent linguistic resources

- Abstract syntax is a set of functions and categories (Martin-Löf, 1984)
- Concrete syntax defines the linearizations of functions and categories into strings
- Resource Grammar Library provides an API for 12 languages
Data

Written object descriptions in Swedish, English and Hebrew
- National galleries catalogues
- Painting and portrait collections
- E-libraries and open archives

OWL representations of cultural objects
- Manually created by the author
- Each file contains about 100 RDF statements
1. Introduction

2. Research problems and goals

3. Language resources and data

4. Methodology and proposed experiments

5. State of the work
Text linguistic analysis process

Given a set of statements and a set of written object descriptions in English, Swedish and Hebrew

For each language

- recognize given statements in the text
- examine how they are related and realized in the discourse
 - semantic constituents
 - syntactic constructions
 - reference items

- capture language dependent aggregation rules

Gradually reduce language dependent rules by writing language independent ones
(1) The subject made its first appearance in 1880, (3) now installed in the East Gallery of the American Wing Courtyard. (2) It belongs to Morris K. Jesup’s collection.

(1) Först på 1900 talet kom den till Sverige och (3) hänger nu på Gripsholms slott (2) i Statens porträttsamling.

(1) ha-tmuwnah hegieh larisunah le-Aeretz yisraAel besnat 1960. (2) hyA sayeket le-quwleqitzyah sel Amir bachar (3) se-nimtzet be-muwzeyAuwn haAretz be-tel Aabiyb
Non-linguistic abstract representations

Rest on the Hunt was painted by John Miel in 1642.
Rastande jägare är målad av John Miel år 1642.
menuhat tzayyd tzuwyrah ’al yedey guwn miyAel be-1642.

Abstract syntax

\[\text{cat} \]
\[\text{Identification} ; \text{ConceptA} ; \text{CreationProperty} ; \text{ConceptB} ; \text{CreationV} ; \text{IndividualFunction} ; \text{Individual} ; \text{fun} \]
\[\text{ObjDescription: ConceptA} \rightarrow \text{CreationProperty} \rightarrow \text{ConceptB} \rightarrow \text{Identification} ; \]
\[\text{CreationAct: CreationV} \rightarrow \text{ConceptB} \rightarrow \text{CreationProperty} ; \]
\[\text{SubjectFunction: IndividualFunction} \rightarrow \text{ConceptA} \rightarrow \text{ConceptB} ; \]
\[\text{SubjectName: Individual} \rightarrow \text{ConceptA} ; \]
\[\text{RestOnTheHunt, JanMiel, 1642 : Individual} ; \]
\[\text{WasPainted : CreationV} ; \]
\[\text{ByPerson, InYear : IndividualFunction} ; \]
Proposed experiments

The generated object descriptions
- compared to original object descriptions written by experts
- evaluated by native speakers of the language

The sentence planner module
- applied to other ontologies from other domains
- tested with other languages
1 Introduction

2 Research problems and goals

3 Language resources and data

4 Methodology and proposed experiments

5 State of the work
State of the work

- We have started the development of a computational sentence planner module.
- The module addresses both internal composition of clauses and their organization into larger structure.
- Text linguistic approach is taken in order to study differences across languages.
- We already identified some semantic and syntactic differences in how statements are aggregated.
Expected contributions

- A sentence planner module that can be re-used by other applications
- An approach that addresses both clause organisations into larger structures and their internal compositions
- Grammar driven generation that utilizes a lexicon
- Linguistically motivated aggregations
- Multilingual prototype that is able to generate from Semantic Web ontologies
Thank you for listening

