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Abstract

Identification of cognates play a very important role in identifying the relationships

between genetically related languages. All the attempts in this direction are based

on the assumption of the existence of a proto-language in the distant past. Moreover

the methods, such as comparative method, used in historical linguistics are highly

dependent on human judgement and automating at least some of the steps would

make the job of a historical linguist easier. I present some new methods for cognate

identification as well as apply the techniques from bioinformatics, for phylogenetic

tree construction, for Dravidian languages. In this process, we also propose a new

system for letter to phoneme conversion.

The thesis is divided into three parts. The first part aims at identification of

cognates using the phoneme feature-values. We present a set of new language inde-

pendent algorithms which use distributional similarity to estimate the word similarity

for identifying cognates. In the second part, we propose a new system for letter to

phoneme conversion which uses algorithms from statistical machine translation and

gives results comparable to the state-of-the-art systems. It takes a orthographic se-

quence as input and converts it into a phoneme sequence. In the third part of the

thesis we show that the character based methods used in bioinformatics can be used

to construct family trees in the framework of lexical diffusion. This is a novel attempt

in itself and has given results which are comparable to the family trees given by the

traditional comparative method.

All the above methods use the recent advances in articulatory phonetics, compu-

tational linguistics, historical linguistics and bioinformatics. These methods can not

only be used for the study of language evolution but can also find use in the relevant

1
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areas such as machine translation and transliteration. Some of the applications of the

above methods have been included in the appendix. The second part can also be used

for machine transliteration. Similarily the first part was used for estimating the dis-

tances between the major literary languages of Indian subcontinent and subsequently

the results were used for constructing a family tree for these languages.



Chapter 1

Introduction and Background

Languages replicate themselves (and thus ‘survive’ from generation to

generation) through a process of native-language acquisition by children.

Importantly for historical linguistics, that process is tightly constrained.

- Don Ringe

Historical linguistics studies the relationships between languages as they change

over time. How do we establish that two geographically distant languages such as

Sanskrit and Latin are related? Providing the evidence that a pair of words from

such two divergent languages are related and have indeed descended from a common

word form in the past is one of the main task of historical linguistics. This problem

of establishing the word similarities is excaberated for languages which donot have

written records. Then the only course left is to study the modern word forms for clues

to establish the proto-form of the proto-language. For this purpose, historical

linguists have come up with the elegant technique called comparative method

which constructs the proto-forms as well as establishes the language families. We

discuss the basic notions and concepts used in historical linguistics in the following

sections.

The research in computational linguistics draws from both computer science and

linguistics and should be able to address both the audience. This thesis has two

3



CHAPTER 1. INTRODUCTION AND BACKGROUND 4

applications of computational methods to historical linguistics, namely cognate iden-

tification and phylogenetic tree construction. So we discuss the concepts in histori-

cal linguistics in detail relating to each application separately under their respective

headings. Section 1.1 gives the basics of cognate identification and its relevance in

the other areas of natural language processing. Section 1.2 describes the basics and

the need for a letter to phoneme conversion which is very useful for cognate iden-

tification. Section 1.3 discusses briefly the ideas behind language evolution and the

different frameworks in the study of language change. It also discusses now outdated

method called glottochronology which was used to estimate the language divergence

time based on the amount of relatedness between languages. The contributions of

this thesis are summarised in section 1.4. An outline of the thesis is given in section

1.5.

1.1 Cognate Identification

Cognates are words of the same origin that belong to different languages. For ex-

ample, the English word beaver and the German word biber are cognates descending

from Proto-Germanic *bebru and Proto-Indo-European *bher. Identification of cog-

nates is a major task in Historical Linguistics for constructing the family tree of the

related languages. The number of cognates between two related languages decreases

with time. Recurrent sound correspondences which are produced by regular sound

changes are very important cues in indentifying the cognates and the reconstruction

of the proto-language. These sound correspondences help in distinguishing between

cognates from chance resemblances. For example, the /d/:/t/ is a regular sound cor-

respondence between Latin and English (ten/decem and tooth/dentem) and helps us

to identify that latin die ’day’ is not cognate with English day1. The current research

has only been able to study only a few language families. Any tool which automates

this process and provides reliable results can be useful for studying new language

families. Atleast the initial results provided by a tool can be used as a starting point

for the study of new languages.

1The example has been taken from Kondrak [47]
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As cognates usually have similar phonetic (and mostly orthographic) forms as

well as similar meaning, string similarities can be used as the first step for identifying

them. Not only orthographic similarities but also phonetic based similarities can

also be used for determining the cognateness of a word pair depending upon the

data. Given a vocabulary list some semantic measures combined with the phonetic

measures can give better results. For identifying the cognates based on recurrent

sound correspondences we need a larger word list for training the system. In this

thesis we only handle the data where the word pairs are generated by taking all

possible word pairs from two word lists.

Identifying cognates is not only important for historical linguistics but is also a

very important task for statistical machine translation models [3], sentence align-

ment [73, 56, 21], induction of bilingual lexicon from bitexts [41] and word align-

ment [48]. In the context of bitext related tasks, ‘cognate’ usually refers to words

with similar in form and meaning and donot make any distinction between borrowed

and genetically related words. A recurring problem in cognate identification is ‘false

friends’. False friends are those which are phonetically and orthographically similar

but donot have similar meaning and are not genetically related. We propose a new

framework for solving this problem and use a distributional similarity based measure

for identifying the (potential) cognates2.

1.2 Letter to Phoneme Conversion

Letter-to-phoneme (L2P) conversion can be defined as the task of predicting the pro-

nunciation of a word given its orthographic form [12].The pronunciation is usually

represented as a sequence of phonemes. Letter-to-phoneme conversion systems play a

very important role in spell checkers [82], speech synthesis systems [70] and translit-

eration [72]. Letter-to-phoneme conversion systems may also be effectively used for

cognate identification and transliteration. The existing cognate identification systems

use the orthographic form of a word as the input. But we know that the correspon-

dence between written and spoken forms of words can be quite irregular as is the

2We donot address the problem of false friends in this thesis
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case in English. Even in other languages with supposedly regular spellings, this irreg-

ularity exists owing to linguistic phenomena like borrowing and language variation.

Letter-to-phoneme conversion systems can facilitate the task of cognate identification

by providing a language independent transcription for any word.

Until a few years ago, letter-to-phoneme conversion was performed considering

only one-one correspondences [15, 25]. Recent work uses many-to-many correspon-

dences [38] and reports significantly higher accuracy for Dutch, German and French.

The current state of the art systems give as much as 90% [37] accuracy for languages

like Dutch, German and French. However, accuracy of this level is yet to be achieved

for English.

A very important point that has to be observed is that whatever results one

gets in this task are data dependent. In no way can one directly compare two sys-

tems which have been tested using different data sets. This poses a problem which

we have not addressed in this paper, but it has to be kept in mind while compar-

ing the results of our experiments with the previously reported results. Rule-based

approaches to the problem of letter-to-phoneme conversion although appealing, are

impractical as the number of rules for a particular language can be very high [43].

Alternative approaches to this problem are based on machine learning and make use

of resources such as pronunciation dictionaries. In this paper, we present one such

machine learning based approach wherein we envisage this problem as a Statistical

Machine Translation (SMT) problem.

1.3 Phylogenetic Trees

Ever since the beginning of evolutionary thought, intuitions have been galore about

the relevance of the process of evolution to Language change. However, in the field

of linguistic theory itself, the idea of “a common origin” had existed long before

Darwin’s observation of ‘curious parallels’ between the processes of biological and

linguistic evolution. The birth of comparative philology as a methodology is often

attributed to that now very well-known observation by Sir William Jones that there

existed numerous similarities between far-removed languages such as Sanskrit, Greek,
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Celtic, Gothic and Latin which was impossible unless they had ‘sprung from some

common source, which perhaps no longer exists’. This observation also marked the

birth of the Indo-European language family hypothesis. Though Jones may not have

been the first to suggest a link between Sanskrit and some of the European languages,

it was only after his famous remarks that explanations for the enormous synchronic

diversity of language started assuming a historical character. Up until that point

in linguistic theory, explanations for the similarity and therefore, the relationship

between different languages had been purely taxonomic and essentially ahistorical.

See [8] for a very interesting account of the comparative study of the development of

fields of linguistic and biological theory.

Language change came to be seen as a process of ‘descent with modification’ from

a common origin. If one were to employ modern linguistic terminology following

Saussure to characterize this earlier phase of linguistic research, it could be said that

synchrony was sought to be understood via diachrony. And diachrony, it was for the

next century or so of linguistic research during which time the philological method

was at its peak until the arrival of Saussure. Although the Indo-European language

family hypothesis came into existence soon after Jones’ findings, it was not until much

later that the nature of the relationship between a set of languages was represented

using a tree topology. The use of a tree topology to represent relationships among a

set of languages made explicit the underlying idea of linguistic diversification which

the Neogrammarian hypothesis entailed. ‘Linguistic diversification refers to how a

single ancestor language (a proto-language) develops dialects which in time through

the accumulation of changes become distinct languages.’ [19] In spite of its traditional

importance in historical linguistics, the Family-tree model of language change has had

quite a few criticisms directed at it, most notably for its neglect of the phenomenon

of borrowing. The strongest challenge to the family-tree model which is based on the

Neogrammarian hypothesis comes from dialectology in the form of a ’wave theory’

model of language change.
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1.4 Contributions

• We have proposed a new framework called Feature N -grams for the identifi-

cation of cognates which outperforms the orthographic measures such as edit

distance, longest common subsequence ratio and dice. We use distributional

similarity, the first attempt in this direction, to our knowledge, for identifying

cognates.

• We prepared a list of cognates for Dravidian languages which can be used for

further experiments. This is the first time any computational methods have

been applied to Dravidian languages.

• We showed that the phrase based statistical machine translation system can be

used for letter to phoneme conversion with results comparable to state-of-the-art

systems.

• We showed that the data obtained in the framework for lexical diffusion can

be used successfully as a input for phylogenetic methods from bioinformatics

for construction of family trees. This work shows that if we can determine the

words where the lexical diffusion of a single sound change is in place, it can be

used effectively for constructing the language trees for a family or sub-family.

Indeed the costly procedure of preparing bilingual word lists can be avoided in

this process.

1.5 Outline

• Chapter 2 talks about the system designed and implemented for cognate iden-

tification. It begins with the description of the related work and then proceeds

to describe the different baseline measures which we have used to evaluate our

system. It describes the framework of feature n-grams and then describes the

two methods which we designed and used for determing the similarity between

a pair of words.
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• Chapter 3 describes the related work on letter to phoneme conversion system,

applications of the system, specifically to cognate identification and the math-

ematical foundations of this approach. We evaluate our system’s efficiency for

various languages and show that our system produces results which are compa-

rable to the state-of-the-art.

• Chapter 4 begins with describing the related work in constructing phylogenetic

trees. In this process we provide an overview of the basics and the similarity

between the language evolution and biological evolution and the appropriateness

in using measures from bioinformatics for the study of language change. The

dataset and the languages under the focus of our study are briefly described in

this chapter. We use a family of methods from bioinformatics and construct a

tree which is very similar to the tree obtained by the traditional comparative

method.

• Chapter 5 gives a conclusion and future work of the problems of cognate iden-

tification, letter to phoneme conversion and phylogenetic trees.



Chapter 2

Cognate Identification

2.1 Introduction

This chapter describes the first attempt in applying computational methods for iden-

tifying the cognates in Dravidian languages. We describe the related work in cognate

identification and then describe the baseline measures. Next we describe our new

framework and the similarity measures which we use for identifying the cognates.

Finaly we discuss the results of our work.

2.2 Related Work

Kondrak [46] proposed algorithms for aligning two cognates, given the phonetic tran-

scriptions, based on phonetic feature values. The system which he calls ALINE [44]

assigns a similarity score to the two strings being compared. In another paper [45]

he combines semantic similarity with the phonemic similarity to identify the cog-

nates between two languages. Another major work of Kondrak is using the word

alignment models from statistical machine translation for determining the sound cor-

respondences between two word lists for related languages.

All the above works donot make any distinction between borrowings from true

cognates. The algorithms also identify false friends between two related languages as

10



CHAPTER 2. COGNATE IDENTIFICATION 11

cognates because of their phonetic or orthographic similarity. Identifying the borrow-

ings is really a tough task as the borrowings seemingly look as a native word on the

surface and much deeper linguistic knowledge is required to identify whether a word

is a borrowing or not 1.

There has been some work done in identifying false friends from true cognates.

Inkpen et al. [36] has used various machine learning algorithms for identifying false

friends. Various orthographic similarity functions between English and French are

used as features for training the machine learning algorithms. They achieve as high

as 98% accuracy in identifying the false friends. Frunza et al. [33] use semi-supervised

bootstrapping of semantic senses to identify the partial cognates between English and

French. In another work Mulloni et al. [57] used sequence labeling techniques such as

SVM (Support Vector Machines) for identifying cognates from written text without

using any phonetic or semantic features. Bergsma et al. [13] use character-based

alignment features as an input for the discriminative classifier for classifying the word

pairs as cognates or non-cognates.

Its always interesting to know which methods perform well, orthographic methods

or methods which use linguistic features (both phonetic and semantic). In this direc-

tion Kondrak et al. [49] evaluate various phonetic similarity algorithms for evaluating

their effectiveness in identifying cognates. Their experiments show that orthographic

measures indeed outperform manually constructed methods.

All the above work was done on Indo-European languages or Algonquian lan-

guages. In this thesis we make an effort to identify cognates for the Dravidian lan-

guages. The orthographic measures donot take the actual sounds represented by

the alphabets into consideration but simply calculate the similarity of a word pair

based on their character similarity. The phonetic measures take the features of the

individual sounds into consideration for estimating the similarity between the words.

The orthographic measures are usually used as a baseline against which any cognate

identification system is tested. In this chapter we only take three such orthographic

measures i.e. Scaled Edit Distance, Dice, LCSR. All these measures are explained in

1I have tried to use phonetic feature-value pairs as features for machine learning and tried to
identify the origin of the words with some success. This is a problem which needs addressing
separately and I believe can become the focus of an independent study by itself
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the next section.

2.3 Orthographic Measures

Dice similarity was used previously for comparing biological sequences which is now

being used for estimating word similarity. It is calculated by dividing twice the total

number of shared letter bigrams by the sum of the total number of letter bigrams in

both the words.

DICE(x, y) =
2 |bigrams(x) ∩ bigrams(y)|

|bigrams(x)| + |bigrams(y)|
(2.1)

For example, DICE(colour,couleur) = 6/11 = 0.55 (the shared bigrams are co, ou,

ur).

LCSR (Longest Common Subsequence Ratio) is computed by dividing the longest

common subsequence by the length of the longer string. Melamed [56] has proposed

that the if the similarity between two strings is greater than 0.58 than they can be

cognates. For example, LCSR between colour,couleur is = 5/7 = 0.71.

Scaled Edit Distance (SED) is the scaled edit distance. The edit distance is

calculated by the minimum edits required to transform one string to another. The

edit operations are substitutions, insertions and deletions all with a cost of 1. The

edit distance is normalised by the average of the lengths of the two strings under

comparision.

2.4 Feature N-grams

The idea in using this measure is that the way phonemes occur together matters less

than the way the phonetic features occur together because phonemes themselves are

defined in terms of the features. Therefore, it makes more sense to a have measure

directly in terms of phonetic features. But since we are experimenting directly with

corpus data (without any phonetic transcription) using the CPMS [75], we also include

some orthographic features as given in the CPMS implementation. The letter to
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feature mapping that we use comes from the CPMS. Basically, each word is converted

into a set of sequences of feature-value pairs such that any feature can follow any

feature, which means that the number of sequences for a word of length lw is less

than or equal to (Nf × Nv)
lw , where Nf is the number of possible features and Nv

is the number of possible values. We create sequences of feature-value pairs for each

word and from this ‘corpus’ of feature-value pair sequences we build the feature n-

gram model.

The feature n-grams are computed as follows. For a given word, each letter is first

converted into a vector consisting of the feature-value pairs which are mapped to it

by the CPMS. Then, from the sequence of vectors of features, all possible sequences

of features up to the length 3 (the order of the n-gram model) are computed. All

these sequences of features (feature n-grams) are added to the n-gram model. Finally

the model is pruned as mentioned above. We expected this measure to work better

because it works at a higher level of abstraction and is more linguistically valid.

Method 1 is based on distributional similarity, whereas Method 2 is based on the

feature n-gram version of DICE. Details about the two methods are in the next

paragraph.

Method 1

For a given word pair, feature-value n-grams and their corresponding probabilities are

estimated for each word by treating each word as small corpus and compiling feature-

value based n-gram model. For each word, all the n-grams irrespective of their sizes

(unigram, bigram etc.) are merged in one vector, as mentioned earlier. Now that we

have two probability distributions, we can calculate how similar they are using any

information theoretic or distributional similarity measure. For our experiments, we

used normalized symmetric cross entropy as given in eqn. 2.2.

dsce =
∑

gl=gm

(p(gl) log q(gm) + q(gm) log p(gl)) (2.2)

The formula for calculating distributional similarity based on these phonetic and

orthographic features is the same (SCE) as given in equation 2.2, except that the

distribution in this case is made up of features rather than letters. Note that since
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we do not assume the features to be independent, any feature can follow any other

feature in a feature n-gram. All the permutations are computed before the feature

n-gram model is pruned to keep only the top N feature n-grams. The order of the

n-gram model is kept as 3, i.e., trigrams.

2.5 Experimental Setup

The data for this experiment was obtained from Dravidian Etymological Dictionary2.

Word lists for Tamil and Malayalam were extracted from the dictionary. Only the

first 500 entries in each word list were manually verified. The candidate pair set was

created by generating all the possible Tamil-Malayalam word pairs. The electronic

version of the dictionary was used as the gold standard. The task was to identify 329

cognate pairs out of the 250,000 candidate pairs (0.1316%). The standard string sim-

SED LCSR DICE Feature-Value n-Gram FNGDICE
Genetic Cognates 49.32% 52.02% 51.06% 53.98% 60%

Table 2.1: Results for cognate identification using distributional similarity for feature-
value pair based model as compared to some other sequence similarity based methods

ilarity measures such as Scaled Edit Distance (SED), Longest Common Subsequence

Ratio (LCSR) and the Dice measures were used as baselines for the experiment. The

system was evaluated using 11-point interpolated average precision [54]. The candi-

date pairs are reranked based on the similarity scores calculated for each candidate

pair. The 11-point interpolated average precision is an information extraction evalu-

ation technique. The precision levels are calculated for the recall levels of 0%, 10%,

20%, 30%,.....,100%, and then averaged to a single number. The precision at recall

levels 0% and 100% are uniformly set at 1 and 0 respectively.

2http://dsal.uchicago.edu/cgi-bin/philologic/getobject.pl?c.0:1:3.burrow
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2.6 Results

The results for the four measures are given in the Table 2. The precision is highest

for feature-value pair based n-grams, inspite of the fact that the measure used by us

is a distributional similarity measure, whereas the other three are sequence similarity

measure. We have not yet performed experiments using sequence probability given

the model of phonetic space, but intuitively the result for sequence probability should

be better than for distributional similarity because we are trying to compare two

sequences, not two distributions. Still, the results do show that feature-value based

model can outperform phoneme based model for certain applications.



Chapter 3

Modeling Letter-to-Phoneme

Conversion as a Phrase Based

Statistical Machine Translation

Problem with Minimum Error

Rate Training

3.1 Introduction

The outline of this chapter is as follows. Section 3.2 presents a brief summary of

the related work done in L2P conversion. Section 3.3 describes our model and the

techniques devised for optimizing the performance. Section 3.4 describes the letter-

to-phoneme alignment. The description of the results and experiments and a new

technique for estimating the difficulty level of L2P task have been given in Section

3.5. Error analysis is presented in Section 3.6. Finally we conclude with a summary

and suggest directions for future work.

16
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3.2 Related Work

In the letter-to-phoneme conversion task, a single letter can map to multiple phonemes

[x → ks] and multiple letters can generate a single phoneme. A letter can also map

to a null phoneme [e → ϕ] and vice-versa. These examples give a glimpse of why the

task is so complex and a single machine learning technique may not be enough to

solve the problem. A overview of the literature supports this claim.

In older approaches, the alignment between the letters and phonemes was taken to

be one-to-one [15] and the phoneme was predicted for every single letter. But recent

work [14, 38] shows that multiple letter-to-phoneme alignments perform better than

single letter to phoneme alignments. The problem can be either viewed as a multi-

class classifier problem or a structure prediction problem. In structure prediction,

the algorithm takes the previous decisions as the features which influence the current

decision.

In the classifier approach, only the letter and its context are taken as features.

Then, either multiclass decision trees [24] or instance based learning as in [84] is used

to predict the class, which in this case is a phoneme. Some of these methods [15]

are not completely automatic and need an initial handcrafted seeding to begin the

classification.

Structure prediction is like a tagging problem where HMMs [81] are used to model

the problem. Taylor claims that except for a preprocessing step, it is completely au-

tomatic. The whole process is performed in a single step. The results are poor, as

reasoned in [37] due to the emission probabilities not being informed by the previ-

ous letter’s emission probabilities. Pronunciation by Analogy (PbA) is a data-driven

method [55] for letter-to-phoneme conversion which is used again by Damper et al [25].

They simply use an Expectation-Maximisation (EM) like algorithm for aligning the

letter-phoneme pairs in a speech dictionary. They claim that by integrating the align-

ments induced by the algorithm into the PbA system, they were able to improve the

accuracy of the pronunciation significantly. We also use the many-to-many alignment

approach but in a different way and obtained from a different source.

The recent work of Jiampojamarn et al [38] combines both of the above approaches
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in a very interesting manner. It uses an EM like algorithm for aligning the letters

and phonemes. The algorithm allows many-to-many alignments between letters and

phonemes. Then there is a letter chunking module which uses instance-based training

to train on the alignments which have been obtained in the previous step. This module

is used to guess the possible letter chunks in every word. Then a local phoneme

predictor is used to guess the phonemes for every letter in a word. The size of the

letter chunk could be either one or two. Only one candidate for every word is allowed.

The best phoneme sequence is obtained by using Viterbi search.

An online model MIRA [23] which updates parameters is used for the L2P task by

Jiampojamarn et al [37]. The authors unify the steps of letter segmentation, phoneme

prediction and sequence modeling into a single module. The phoneme prediction and

sequence modeling are considered as tagging problems and a Perceptron HMM [22]

is used to model it. The letter segmenter module is replaced by a monotone phrasal

decoder [85] to search for the possible substrings in a word and output the n-best list

for updating MIRA. Bisani and Ney [14] take the joint multigrams of graphemes and

phonemes as features for alignment and language modeling for phonetic transcription

probabilities. A hybrid approach similar to this is by [83].

In the next section we model the problem as a Statistical Machine Translation

(SMT) task.

3.3 Modeling the Problem

Assume that given a word, represented as a sequence of letters l = lJ1 = l1...lj...lJ ,

needs to be transcribed as a sequence of phonemes, represented as f = f I
1 = f1...fi...fI .

The problem of finding the best phoneme sequence among the candidate translations

can be represented as:

fbest = arg max
f

{Pr (f | l)} (3.1)

We model the problem of letter to phoneme conversion based on the noisy channel

model. Reformulating the above equation using Bayes Rule:
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fbest = arg max
f

p (l | f) p (f) (3.2)

This formulation allows for a phoneme n-gram model p (f) and a transcription

model p (l | f). Given a sequence of letters l, the argmax function is a search function

to output the best phonemic sequence. During the decoding phase, the letter sequence

l is segmented into a sequence of K letter segments l̄K1 . Each segment l̄k in l̄K1 is

transcribed into a phoneme segment f̄k. Thus the best phoneme sequence is generated

from left to right in the form of partial translations. By using an n-gram model pLM

as the language model, we have the equations:

fbest = arg max
f

p (l | f) pLM (3.3)

with p (l | f) written as

p(l̄K1 | f̄K
1 ) =

K
∏

k=1

Φ(l̄k | f̄k) (3.4)

From the above equation, the best phoneme sequence is obtained based on the

product of the probabilities of transcription model and the probabilities of a language

model and their respective weights. The method for obtaining the transcription

probabilities is described briefly in the next section. Determining the best weights is

necessary for obtaining the right phoneme sequence. The estimation of the models’

weights can be done in the following manner.

The posterior probability Pr (f | l) can also be directly modeled using a log-linear

model. In this model, we have a set of M feature functions hm(f, l),m = 1...M . For

each feature function there exists a weight or model parameter λm,m = 1...M . Thus

the posterior probability becomes:

Pr (f | l) = pλM

1

(f | l) (3.5)

=
exp

[

ΣM
m=1λmhm(f, l)

]

∑

f́I

1

exp
[

ΣM
m=1λmhm(f́ I

1 , l)
] (3.6)
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with the denominator, a normalization factor that can be ignored in the maximization

process.

The above modeling entails finding the suitable model parameters or weights which

reflect the properties of our task. We adopt the criterion followed in [60] for optimising

the parameters of the model. The details of the solution and proof for the convergence

are given in Och [60]. The models’ weights, used for the L2P task, are obtained from

this training.

3.4 Letter-to-Phoneme Alignment

We used GIZA++ [61], an open source toolkit, for aligning the letters with the

phonemes in the training data sets. In the context of SMT, say English-Spanish, the

parallel corpus is aligned bidirectionally to obtain the two alignments. The IBM mod-

els give only one-to-one alignments between words in a sentence pair. So, GIZA++

uses some heuristics to refine the alignments [61].

In our input data, the source side consists of grapheme (or letter) sequences and

the target side consists of phoneme sequences. Every letter or grapheme is treated as

a single ‘word’ for the GIZA++ input. The transcription probabilities can then be

easily learnt from the alignments induced by GIZA++, using a scoring function [42].

Figure 3.1 shows the alignments induced by GIZA++ for the example words which

are mentioned by Jiampojamarn et al [38]. In this figure, we only show the alignments

from graphemes to phonemes.

Figure 3.1: Example Alignments from GIZA++
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3.5 Evaluation

We evaluated our models on the English CMUDict, French Brulex, German Celex

and Dutch Celex speech dictionaries. These dictionaries are available for download

on the website of PROANALSYL1 Letter-to-Phoneme Conversion Challenge. Table

3.1 shows the number of words for each language. The datasets available at the

website were divided into 10 folds. In the process of preparing the datasets we took

one set for test, another for developing our parameters and the remaining 8 sets

for training. We report our results in word accuracy rate, based on 10-fold cross

validation, with mean and standard deviation.

Language Datasets Number of Words

English CMUDict 112241

French Brulex 27473

German Celex 49421

Dutch Celex 116252

Table 3.1: Number of words in each Dataset

We removed the one-to-one alignments from the corpora and induced our own

alignments using GIZA++. We used minimum error rate training [60] and the A*

beam search decoder implemented by Koehn [42]. All the above tools are available

as parts of the MOSES [40] toolkit.

3.5.1 Exploring the Parameters

The parameters which have a major influence on the performance of a phrase-based

SMT model are the alignment heuristics, the maximum phrase length (MPR) and

the order of the language model [42]. In the context of letter to phoneme conversion,

phrase means a sequence of letters or phonemes mapped to each other with some

probability (i.e., the hypothesis) and stored in a phrase table. The maximum phrase

length corresponds to the maximum number of letters or phonemes that a hypothesis

can contain. Higher phrase length corresponds a larger phrase table during decoding.

1http://www.pascal-network.org/Challenges/PRONALSYL/
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We have conducted experiments to see which combination gives the best output.

We initially trained the model with various parameters on the training data and tested

for various values of the above parameters. We varied the maximum phrase length

from 2 to 7. The language model was trained using SRILM toolkit [77]. We varied

the order of language model from 2 to 8. We also traversed the alignment heuristics

spectrum, from the parsimonious intersect at one end of the spectrum through grow,

grow-diag, grow-diag-final, grow-diag-final-and and srctotgt to the most lenient union

at the other end. Our intuitive guess was that the best alignment heuristic would be

union.

We observed that the best results were obtained when the language model was

trained on 6-gram and the alignment heuristic was union. No significant improvement

was observed in the results when the value of MPR was greater than 5. We have taken

care such that the alignments are always monotonic. Note that the average length

of the phoneme sequence was also 6. We adopted the above parameter settings for

performing training on the input data.

3.5.2 System Comparison

We adopt the results given in [38] as our baseline. We also compare our results with

some other recent techniques mentioned in the Related Work section. Table 3.2 shows

the results. As this table shows, our approach yields the best results in the case of

German and Dutch. The word accuracy obtained for the German Celex and Dutch

Celex dataset using our approach is higher than that of all the previous approaches

listed in the table. In the case of English and French, although the baseline is achieved

through our approach, the word accuracy falls short of being the best. However, it

must also be noted that the dataset that we used for English is slightly larger than

those of the other systems shown in the table.

We also observe that for an average phoneme accuracy of 91.4%, the average

word accuracy is 63.81%, which corroborates the claim by Black et al [15] that a 90%

phoneme accuracy corresponds to 60% word accuracy.
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Language Dataset Baseline 1-1 Align 1-1 + CSIF 1-1 + HMM M-M Align M-M + HMM MeR + A*
English CMUDict 58.3±0.49 60.3±0.53 62.9±0.45 62.1±0.53 65.1±0.60 65.6±0.72 63.81±0.47
German Celex 86.0±0.40 86.6±0.54 87.6±0.47 87.6±0.59 89.3±0.53 89.8±0.59 90.20±0.25
French Brulex 86.3±0.67 87.0±0.38 86.5±0.68 88.2±0.39 90.6±0.57 90.9±0.45 86.71±0.52
Dutch Celex 84.3± 0.34 86.6±0.36 87.5±0.32 87.6±0.34 91.1±0.27 91.4±0.24 91.63±0.24

Table 3.2: System Comparison in terms of word accuracies. Baseline:Results from PRONALSYS website.
CART: CART Decision Tree System [15]. 1-1 Align, M-M align, HMM: one-one alignments, many-many
alignments, HMM with local prediction [38]. CSIF:Constraint Satisfaction Inference(CSIF) of[83]. MeR+A*:Our
approach with minimum error rate training and A* search decoder. “-” refers to no reported results.

3.5.3 Difficulty Level and Accuracy

We also propose a new language-independent measure that we call ‘Weighted Sym-

metric Cross Entropy’ (WSCE) to estimate the difficulty level of the L2P task for a

particular language. The weighted SCE is defined as follows:

dscewt
=
∑

rt (pl log (qf ) + qf log (pl)) (3.7)

where p and q are the probabilities of occurrence of letter (l) and phoneme (f)

sequences, respectively. Also, rt corresponds to the conditional probability p(f | l).

This transcription probability can be obtained from the phrase tables generated dur-

ing training. The weighted entropy measure dscewt
,for each language, was normalised

with the total number of such n-gram pairs being considered for comparison with

other languages. We have fixed the maximum order of l and f n-grams to be 6. Ta-

ble 3.3 shows the difficulty levels as calculated using WSCE along with the accuracy

for the languages that we tested on. As is evident from this table, there is a rough

correlation between the difficulty level and the accuracy obtained, which also seems

intuitively valid, given the nature of these languages and their orthographies.

Language Datasets dscewt
Accuracy

English CMUDict 0.30 63.81±0.47

French Brulex 0.41 86.71±0.52

Dutch Celex 0.45 91.63±0.24

German Celex 0.49 90.20±0.25

Table 3.3: dscewt
values predict the accuracy rates.
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3.6 Error Analysis

In this section we present a summary of the error analysis for the output generated.

We tried to observe if there exist any patterns in the words that were transcribed

incorrectly. The majority of errors occurred in the case of vowel transcription, and

diphthong transcription in particular. In the case of English, this can be attributed

to the phenomenon of lexical borrowing from a variety of sources as a result of which

the number of sparse alignments is very high. The system is also unable to learn

allophonic variation of certain kinds of consonantal phonemes, most notably frica-

tives like /s/ and /z/. This problem is exacerbated by the irregularity of allophonic

variation in the language itself.



Chapter 4

An Application of Character

Methods for Dravidian Languages

4.1 Introduction

The outline of the chapter is as follows. Section 4.2 gives the basics and background

of the various terms used in bioinformatics for infering phylogenetic trees and their

parallels in historical linguistics. Section 4.3 describes the dataset used in our exper-

iments.Section 4.4 and 4.5 describes the distance methods and the results of the ex-

periments. Section 4.6 describes the character based methods and the results. Finally

the chapter concludes with the discussion of the trees resulting from the experiments.

25
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4.2 Basics and Related Work

Once glottochronology1 was hugely popular for constructing family tree and esti-

mating divergence times which are no longer popular. In recent years, the methods

developed in computational biology were used for inferring phylogenetic trees. Based

on the similarity between language evolution and biological evolution the methods

have been successfully applied to languages for constructing the phylogeny. All these

methods are character based or distance based methods. The availability of data sets

for well-established language families like Indo-European [27] has spurred a number

of researchers to apply these methods to these data sets and validate the resultant

phylogenetic trees against the well-established linguistic facts and to test competing

hypotheses. We give a overview of the terminology used in the following section.

1A major attempt to construct family trees and estimate the language divergence times was pre-
viously done using lexicostatistics and glottochronology. Lexicostatistics was introduced by Morris
Swadesh [79]. A list of cognate words in the languages being analysed is used to build a family tree.
In the first step a basic meaning list is taken which is supposed to be resistant to borrowing and
replacement and the meanings are supposed to be culturally-free and universal. Concepts such as
body parts, numerals, elements of nature etc. are present in the list. The idea is that no human
language would be complete without this list. Once such a meaning list is composed, the common
words in each language is used to fill the list. In the second step the cognates among these words
are found by using comparative method. Any borrowings are discarded from the list. In the third
step the distance between each pair of languages is supposed to be the number of shared cognates
between the corresponding pair. By using a technique called UPGMA2 the distances are used to
construct a family tree for the languages.

Now glottochronology is used to estimate the divergence time for each node in the family tree.
Glottochronology has the assumption that the rate of lexical replacement is constant for all languages
at all times. This constant is called as glottochronological constant and the value is fixed at 0.806.
Swadesh [79] used the following formula for estimating the divergence times of Amerindian languages
where r is the glottochronological constant and c is the percentage of shared cognates.

t =
log c

2 log r
(4.1)

The glottochronology method has been criticised for the following reasons. First, there is a loss
of information when the character-state data is converted to percentage similarity scores. Second,
the problem that a language can have multiple words, may or may not have a word is not handled.
Third, the rate of evolution among languages is quite different and the assumption of a universal rate
constant doesnot hold. Fourth, the UPGMA method based on the percentage of shared cognates can
produce inaccurate branch lengths and thus produce erroneous divergence times. Also the language
evolution is not always tree-like. For this reasons the researchers in the last 10 years started using
techniques from bioinformatics to infer phylogenetic trees.
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4.2.1 Basic Concepts

Characters

Language evolution can be seen as a change in some of its features. A character

encodes the similarity between the languages on the basis of these features and defines

a equivalence relation on the set of languages L. Defining the character formally

A character is a function c : L → Z where L is the set of languages and

Z is the set of integers.

A character can take different forms across a set of languages which are called “states”.

These characters can either be lexical, phonological or morphological features. The

actual values of these characters are not important [65]. A lexical character corre-

sponds to a meaning slot. For a given meaning, lexical items for different languages

fall into different cognate classes (based on the cognacy judgment between them) and

different cognate classes form the different states of the character. Two languages

would have same state if they have lexical items which are cognates. Figure 4.1

shows an example of how the lexical characters are represented for a meaning slot.

The superscript shows the state exhibited by each language for a particular mean-

ing slot. Morphological characters are normally inflectional markers and are coded

by cognation like lexical items. Phonological characters are used to represent the

presence or absence of particular sound change(or a series of sound changes) in the

corresponding language.

Figure 4.1: Consensus tree of Indo-European languages obtained by Gray and Atkin-
son (2003) using penalized maximum likelihood on lexical items.



CHAPTER 4. PHYLOGENETIC TREES 28

Homoplasy and Perfect Phylogenies

Two languages can share the same state not only due to shared evolution but also due

to phenomena called backmutation and parallel development. These phenomena

are jointly referred to as homoplasy. For a particular character, if the already

observed state reappears in the tree then the phenomenon is called backmutaion.

Two languages can independently evolve in a similar fashion. In that case the two

languages exhibit the same state which is called as parallel development. All of the

initial work has assumed homoplasy-free evolution. When a character evolves without

homoplasy down the tree then it is said to be compatible for that tree and the tree is

said to be a perfect phylogeny. Hence everytime the character’s state changes all

the subtrees rooted at that point share the same state. Another source of ambiguity

in the states of a character can be due to borrowing and are normally discarded.

4.2.2 Related Work

The fashion in which characters evolve down the tree is described by a model of

evolution. This specification or non-specification of models of evolution broadly divide

the phylogenetic inference methods into two categories. For example the methods

such as Maximum Parsimony, Maximum Compatibility and Distance methods such

as Neighbour Joining and UPGMA donot require a explicit model of evolution. But

statistical methods like Maximum Likehood and Bayesian Inference are parametric

methods where the parameters of the model are tree topology, branch length and

the rates of variation across sites. There is an interesting debate is going on in the

scientific community regarding the appropriateness of the assumption of a model of

evolution for linguistic data [30].

Gray and Jordan were among the first to apply Maximum Parsimony to Aus-

tronesian language data. They applied the technique to 5,185 lexical items from 77

Austronesian languages and were able to get a single most parsimonious tree. The

maximum parsimony method returns the tree on which the minimum number of

character state changes have taken place. There are different types of parsimonies

such as Wagner, Camin-Soakal which have different assumptions about the character
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state changes. The assumptions of the above parsimonies is described in detail in the

section 4.6.

Particularly interesting is the work of Gray and Atkinson [7, 9] who applied

bayesian inference techniques [35] to the Indo-European database. They used a binary

valued matrix to represent the lexical characters. Although their tree had nothing

new in terms of its structure, it was identical to the tree established by the historical

linguists (the position of Albanian not resolved), the dating based on penalised like-

lihood supported the famous Anatolian hypothesis compared to Krugan hypothesis,

dating the Indo-European family as being 8000 years old. Their model assumes that

the cognate sets evolve independently, they use a gamma distribution to model the

variation across the cognate sets and try to find a sample of trees which matches their

data. Unlike the other non-parametric methods mentioned above their method can

handle polymorphism. By representing the cognate information in terms of binary

matrices ,unlike glottochronology, the information is retained in this model. The

idea was to test the model in the scenarios where the cognacy judgements were not

completely accurate and where the model misspecification could cause a bias in the

estimate. The model was tested on a different set of ancient data prepared by Ringe

et al [65]. They further tested their model on synthetic data giving chance for bor-

rowing to occur between different lineages. The model was tested against two kinds of

borrowing viz- borrowing between any two lineages and borrowing between lineages

which are located locally. The dating in all the above cases was largely consistent

with the dating they had obtained on the Dyen’s dataset, which they claim, upholds

the robustness of the model.

Ryder [67] in his work used syntactic features as characters and applied the above

methods for constructing the phylogenetic tree for Indo-European languages. He also

used the same techniques for various language family data for grouping related lan-

guages into their respective language families. The syntactic features were obtained

from WALS database [10]. The assumption was that the rate by which syntactic

features are replaced through borrowing is much lesser than in the case of lexical

items.
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Figure 4.2: An example of the binary matrix used by Gray and Atkinson.

Ringe et al [65] proposed a computational technique called Maximum Compat-

ibility for constructing phylogenetic trees. The technique seeks to find the tree on

which the highest number of characters are compatible. Their model assumes that

the lexical data is free of back mutation and parallel development. The method

was applied to a set of 24 ancient and modern Indo-European language data. They

use morphological, lexical and phonological characters for inferring the phylogeny of

these languages. Nakhleh et al [58] propose an extension to the method of Ringe

et al known as Perfect Phylogenetic Networks which models homoplasy and borrow-

ing explicitly. For a comparision of various phylogenetic methods on the ancient

Indo-European data, refer [59]. They observed that almost all the methods except

UPGMA had great similarity as well as striking differences between the trees. It

must be noted that these scholars have not sought answers to much-disputed ques-

tions in the literature on the Indo-European language family tree such as the status

of Albanian in their afore-mentioned quantitative analyses. In each of the attempts

discussed till now, the main thrust has been to demostrate that language phylogeny

as inferred using these quantitative methods was in almost perfect agreement with

the traditional comparative method-based family tree thus demonstrating the utility

of quantitative methods in the study of language change.

Ellison et al [28] discuss establishing a probability distribution for every language

through intra-lexical comparison using confusion probabilities. They use scaled edit

distance3 to calculate the probabilities. Then the distance between every language is

3The edit distance between by and rest is 6.0 and between interested and rest is 6.0. Although
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Figure 4.3: Consensus tree of Indo-European languages obtained by Gray and Atkin-
son (2003) using penalized maximum likelihood on lexical items.
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estimated through KL-divergence and Rao’s distance. The same measures are also

used to find the level of cognacy between the words. The experiments are conducted

on Dyen’s [27] classical Indo-European dataset. The estimated distances are used for

constructing the phylogeny of the Indo-European languages. Figure 4.4 shows the

tree obtained using their method.

Alexandre Bouchard et al [17, 18] in a novel attempt, combine the advantages

of the classical comparative method and the corpus-based probablistic models. The

word forms are represented by phoneme sequences which undergo stochastic edits

along the branches of a phylogenetic tree. The robustness of this model is tested

against different tree topologies and it selects the linguistically attested phylogeny.

Their stochastic model successfully models the language change by using synchronic

languages to reconstruct the word forms in Vulgar Latin and Classical Latin. Al-

though it reconstructs the ancient word forms of the Romance Languages, a major

disadvantage of this model is that some amount of data of the ancient word forms is

required to train the model, which may not be available in many cases.

Some earlier attempts by Andronov [5] using glottochronology for dating the Dra-

vidian language family divergences was criticised for the largely faulty data used by

him which made the dating unreliable and untenable. Krishnamurti et al [52] used

unchanged cognates as a criterion for the subgrouping of South-Central Dravidian

languages. Krishnamurti [50] prepared a list of 63 cognates in all the six languages

which he determined would be sufficient for inferring the language tree of the family.

They examined a total of 945 rooted binary trees4 and apply the 63 cognates to every

tree and then rank the trees. The tree which had the least score was considered to

be the one that best represented the family tree.

both pairs have the same distance the first pair has nothing in common. The scaled edit distance
is obtained by divding the distance by the average of the lengths of the two words. This makes the
distance between the first pair to be 2.0 and the second pair to be 0.86.

4(2n − 3)/2n−2(n − 2)!
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Figure 4.4: Tree of Indo-European Languages obtained using Intra-Lexical Compari-
sion of Ellison and Kirby(2007)
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4.3 Dataset

We used two different set of data for our experiments. The data is taken for the

six South-Central (Now referred to as South Dravidian II in the recent literature.

Refer to [51].) group of Dravidian Languages - viz. Gondi, Konda, Kui, Kuvi, Pengo,

Manda. The data for the distance methods was obtained using the number of changed

cognates every language pair shares. The number of shared cognates-with-change is

the measure of the relative distance between the language pair. The following table

shows the number of shared cognates between these languages (Taken from [52]).

The second data set was taken from Krishnamurti 1983 who provided the list of

such cognates which were affected or not affected by sound change. We represented

the unchanged cognates with 0 and changed cognates with 1. We use the same

notation throughout the paper. We provide the dataset so that anyone can use the

dataset and can replicate these experiments. This dataset was used as the input for

character based methods.

Upto this point the literature which we have refered and mentioned in the section

4.2 use just the presence or absence of the sound change for infering phylogenetic

trees and relationship between languages. Only those sound changes are taken which

are supposed to be free of homoplasy. In this paper, we take the presence or absence

of unchanged cognates as characters for inferring phylogenetic trees which we believe

is a novel approach and has not been attempted before.

4.4 Distance Methods

All the distance based methods take the distance between two taxa as input and

try to give the tree which explains the data. The assumption of a lexical clock may

or may not hold depending upon the method. In our study we examine two such

methods which are very popular in evolutionary biology and are also widely used in

historical linguistics.

UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

The lexicostatistics experiment for IE languages by [27] uses this method for the
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construction of the phylogenetic trees. The method works as follows.

1. Find the two closest languages (L1, L2) based on percentage of shared cognates.

2. Make L1,L2 siblings.

3. Remove one of them, say L1 from the set.

4. Recursively construct the tree on the remaining languages.

5. Make L1 the sibling of L2 in the final tree.

UPGMA assumes a uniform rate of evolution throughout the tree i.e, the distance

of the root node to the leaves is equal. Moreover it produces a rooted tree whose

ancestor is known.

Neighbour Joining (NJ)

Neighbour Joining is a type of agglomerative clustering method developed by Saitou

and Nei [69]. It is also a greedy method like UPGMA but doesnot assume a uniform

lexical clock hypothesis. Moreover the method produces unrooted trees with branch

lengths which need to be rooted for inferring the ancestral states and the divergence

times between the languages. The method starts out with a star-like topology and

then tries to minimize an estimate of the total length of the tree by combining together

the languages that provide the most reduction. It has been shown that the method

is statistically consistent (if there is a tree which fits the lexical data perfectly, it

retrieves the tree). The general observation is that Neighbour Joining returns the

best tree out of all the distance based methods. There are other distance based

methods such as FITSCH which are relatives (a generalised version) of UPGMA and

NJ which we don’t take up in our current study.

4.5 Experiments and Results for distance methods

Using a technique called U-statistic hierarchial clustering Roy D’Andrade [26] has

used the above data and gave the following tree structure. The following tree structure

in figure 4.5 exactly matches the tree given by Krishnamurti using morphological and
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Gondi Konda Kui Kuvi Pengo

Konda 16

Kui 18 18

Kuvi 22 20 88

Pengo 11 19 48 49

Manda 10 9 40 42 57

Table 4.1: Matrix of shared cognates-with-change

phonological isoglosses. For our purpose the similarity matrix in Table 4.1 is converted

into a distance matrix using the following formula d = 1/sij, i <= j.

Figure 4.5: Tree obtained through comparative method

Figures 4.6 and 4.7 show the trees obtained by applying UPGMA and NJ methods

on the data given in table 4.1.

4.6 Character Methods

Maximum Parsimony

Without the consideration of bayesian analysis, for any kind of data parsimonous

methods are said to be the most efficient in retrieving the tree which is the closest to

the traditional tree given by comparative method [64]. We first used this method to

search for the most parsimonous tree from the given data. There are various types

of parsimonies depending upon the number of states (binary or multi-state) and the

kind of transitions between the states. In our study we limit ourselves to three kind
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Figure 4.6: Phylogenetic tree using UPGMA

Figure 4.7: Phylogenetic tree using Neighbour Joining
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of parsimonies Camin-Sokal, Wagner and Dollo parsimony. The assumptions of each

method is given below [32].

Assumptions of Camin-Sokal and Wagner’s parsimony

1. Ancestral states are known (Camin-Sokal) or unknown (Wagner).

2. Different characters evolve independently.

3. Different lineages evolve independently.

4. Changes 0 → 1 are much more probable than changes 1 → 0 (Camin-Sokal) or

equally probable (Wagner).

5. Both of these kinds of changes are a priori improbable over the evolutionary

time spans involved in the differentiation of the group in question.

6. Other kinds of evolutionary event such as retention of polymorphism are far

less probable than 0 → 1 changes.

7. Rates of evolution in different lineages are sufficiently low that two changes in

a long segment of the tree are far less probable than one change in a short

segment.

The objections to some of these assumptions can be summarised in the following

statements. The assumption that different lineages evolve independently is not justi-

fiable since borrowing does occur between the lineages (In the case of lexical diffusion,

the words are affected by the change in the other words in the lexicon. In our study,

the lexical data which we used was carefully studied and any item with the slightest

evidence of borrowing was discarded. Hence this need not be a concern in our case).

We also tested the hypothesis of the sound change being irreversible by giving equal

chance for the reversible direction. Camin-Soakal parsimony reflects the case of sound

change being irreversible and Wagner parsimony allows for a equal probability for a

sound change to be reversible.

Assumptions of Dollo’s Parsimony

1. We know which state is the ancestral one (state 0).
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Figure 4.8: Phylogenetic tree using PARS method from PHYLIP

Figure 4.9: Phylogenetic tree using PARS method from PHYLIP

Figure 4.10: Phylogenetic tree using Camin-Soakal parsimony
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2. The characters are evolving independently.

3. Different lineages evolve independently.

4. The probability of a forward change (0 → 1) is small over the evolutionary

times involved.

5. The probability of a reversion (1 → 0) is also small, but still far larger than the

probability of a forward change, so that many reversions are easier to envisage

than even one extra forward change.

6. Retention of polymorphism for both states (0 and 1) is highly improbable.

7. The lengths of the segments of the true tree are not so unequal that two changes

in a long segment are as probable as one in a short segment.

Dollo’s parsimony is based on the law that traits can evolve only once. In this context,

the evidence of cognates which represent the process of diffusion of sound change still

in process, can be treated as trait. This is equivalent to stating that the sound

change is homoplasy free. It has diffused over the languages in their common stage

of evolution rather occuring at a later stage when the languages have diverged. This

variety of parsimony also allows for determining the root of the tree.

Figure 4.11: Phylogenetic tree using Dollo’s parsimony
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Figure 4.12: Phylogenetic tree using Dollo’s parsimony

Bayesian Inference of Phylogenies

This is a recent class of methods which is an extension of maximum likelihood meth-

ods. We tried to use this method for inferring the tree from the character data. We

used Metropolis-coupled Markov Chain Monte Carlo (MCMC) for sampling the pos-

terior probabilities of the trees. The working of the method was explained in the

Related Work section in detail. We would talk about the parameter settings and how

we ran the experiments for inferring the tree. We tried using two priors a fixed shape

parameter (α) and a uniform distribution. The results didnot vary much when we

changed the priors. MCMC runs n chains out of which n − 1 chains are heated. A

heated chain has steady-state distribution πi(X) = π(X)βi with βi = 1
1+T (i−1)

where

T is the temperature, i is the number of the chain and π is the posterior distribution

and β is the power to which the posterior probability of each heated chain is raised to.

The chains are heated in an incremental fashion and after each iteration, the states

of two randomly picked chains i and j are swapped with the following probability

min

(

1,
πi(X

(j)
t )πj(X

(i)
t )

πi(X
(i)
t )πj(X

(j)
t )

)

(4.2)

Inferences or sampling is usually done on the cold chain with β = 1 and T = 0.20 and

the number of chains n = 4. We ran two independent analyses. The chains were kept

running until the average deviation of the split frequencies between the two analyses

was less than 0.01. The first 25% of the analyses were thrown out as the part of
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burn-in.

4.7 Discussion

We compare the results of all our experiments with the traditional tree topology

given by Krishnamurti. To our surprise, UPGMA gives the tree which is the most

consistent with the data given in table 4.1. In his 1983 paper Krishnamurti explains

the issues present in the tree diagram 4.5. The tree makes 40 predictions out of which

37 are correct and 3 are wrong. The wrong predictions are 1) Kuvi should be closer

to Konda than it is to Gondi but Kuvi shares 20 innovative items with Konda but

22 with Gondi 2) Konda should be closer to Manda than it is to Gondi but Konda

shares 9 items with Manda but as many as 16 items with Gondi 3) Manda should be

closer to Konda than it is to Gondi. The last prediction also turns out to be wrong

since Manda shares 10 items with Gondi but only 9 items with Gondi. All of the

above wrong predictions are rectified or donot appear in the tree given by UPGMA.

By placing Gondi and Konda under the same subtree all the wrong predictions can be

corrected. We donot comment about the other predictions because we are not aware

of those at this moment. Interestingly, the neighbour joining method gives the same

tree as the one obtained by Krishnamurti after they have applied their method on the

data of two sound changes. Neighbour joining method returns an unrooted tree. So

we rooted our tree using Gondi as a the outgroup and we obtained the rooted tree.

The results obtained in the next set of experiments using unchanged cognates as

character-based data are very interesting. We use three variants of parsimony and

each of them gives similar trees. Wagner’s and Dollo’s parsimonies return two most

parsimonious trees whereas Carmin-Soakal’s parsimony returns only one tree. The

trees returned by Wagner’s and Dollo’s parsimonies are identical. All the parsimo-

nious methods return the tree which is identical to comparative method. Wagner’s

and Dollo’s return an extra tree. The tree returned by the method of Krishnamurti

and Carmin-Soakal are the same. The extra tree returned by Wagner’s and Dollo’s

is actually ranked second by Krishnamurti’s method. This is actually an important

result because the relaxation of the irreversibility of sound change constraint gives



CHAPTER 4. PHYLOGENETIC TREES 43

two trees with the same score5. In the case of Dollo’s parsimony, the assumption

is that change is very difficult to acquire but very easy to loose. This method also

returns an extra tree which is ranked second by Krishnamurti.

After rigorously examining the method of Krishnamurti, we believe it to be a

kind of parsimony with the same assumptions as Carmin-Soakal. We applied the

Carmin-Soakal parsimony and scored the tree obtained by UPGMA and obtained a

score of 79. In his analysis using single sound change Krishnamurti, considered only

the trees which had a score ranging from 71 to 87 whose number was 45. Out of

those 45 trees only the 11 lowest-scoring trees were considered. Their reason was that

the trees with a score of 77 had Gondi and Konda reversed and disagrees with the

lower scoring trees. We believe this solely cannot be the reason for not extending the

study to other trees. As evident from the tree of figure 4.5, both the languages are

not reversed but are grouped under the same subtree.

Examining the tree returned by bayesian analysis, we found that it returns essen-

tially a tree identical to neighbour joining but with terenary branching with Gondi,

Konda and the other languages as branches. The branch lengths returned by all the

methods agree to the fact that Gondi has branched earlier than other languages which

is followed by Konda. There is a general ambiguity about grouping of Manda and

Pengo as well as Kui and Kuvi together.

5This is the case of Wagner’s parsimony.
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Conclusion and Future Work

5.1 Conclusion

In this thesis we have tried to address two problems in historical linguistics namely

Cognate Identification and Phylogenetic Trees. We have also tried to adress the

problem of Letter to Phoneme Conversion which is very useful as a preprocessing

step for Cognate Identification.

We have proposed two measures for identifying the cognates one based on dis-

tributional similarity, other based on feature n-gram DICE. The proposed method

performs better than the earlier orthographic methods as it uses deeper phonetic

information based on a rigorous mathematical model. The system was tested on a

list of word pairs of length 250,000 out of which only 329 are genetic cognates. This

shows the level of difficulty of the task of cognate identification. We evaluated our

system against three baselines and we have achieved an improvement of 21%.

We have tried to address the problem of letter-to-phoneme conversion by modeling

it as an SMT problem and we have used minimum error rate training to obtain the

suitable model parameters, which according to our knowledge, is a novel approach to

L2P task. We have experimented with minumum error rate training and the statistical

machine translation toolkit Moses by representing every word as a sentence and every

letter and phoeneme as a word. The results obtained are comparable to the state of

the art system and our error analysis shows that a lot of improvement is still possible.

44
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The trees we have obtained by using the unchanged cognates in south-central

Dravidian language data as characters were very similar to the tree given by the

comparative method. This is an attempt which has never been tried before. Unlike

the work mentioned in section 4.1 which uses lexical, syntactic or morphological

characters for inferring phylogenetic trees we use the cognates which are affected by

the change as characters for determining the tree. All our attempts to root the tree

using Gondi as the outgroup has yielded trees which concur to a large extent with

the tree given by the comparative method. We also show that UPGMA performs

better than neighbour joining in constructing the trees. Moreover, unlike the method

proposed by Krishnamurti1 the methods which we used are able to obtain the branch

length of the tree. These branch lengths can be used to calibrate the divergence times

of the tree and can throw light upon the antiquity of the Dravidian language family.

This work reinforces the hypothesis that deeper linguistic features are more helpful

in establishing the family tree than using lexical items for the same purpose.

5.2 Future work

All the work reported in the thesis can be extended in different directions. We mention

some of the possible directions in which the work can be extended.

5.2.1 Possible Future Work on Cognate Identification

The performance of the cognate identification system can be improved by taking the

sequence probabilities into consideration. We also propose a new measure which is

actually a geometric mean of the precision of the various n-grams between the prob-

ability distributions of the word pair. One more aspect which can certainly improve

the performance of the system is the weights given to the various articulatory fea-

tures. By giving suitable weights to the articulatory features and designing a measure

which takes the weights into consideration would probably increase the system’s per-

formance. One another aspect in the distributional similarity is the normalisation

1This work is based on his 1983 paper
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factor. Whereas the orthographic measures are sequence based measures and are

appropriately normalised by length, the symmetric cross entropy measure (SCE) has

to be normalised by length. Finding the right way of normalisation would certainly

improve the perfomance of the system. In this thesis we have only considered a single

information theoretic measure i.e. SCE was used for measuring the distributional

similarity. Testing with various other measures would be definitely a direction of

research to follow.

5.2.2 Possible Future Work on Letter to Phoneme Conver-

sion

Intuitively, the performance of the system can be improved in at least two areas.

First is the Minimum Error Rate Training (MERT) and the second is the decoding

phase. The MERT implementation currently uses the Bleu function [62] as the loss

function. Bleu function calculates the geometric mean of the precision of n-grams

of various lengths between the candidate and the reference translation. At present,

the precision is calculated only up to four grams, which we believe is insufficient for

the L2P task. This can be replaced with string similarity measures like Levenshtein

distance or a 0-1 loss function or a combination of both. Incorporating more model

parameters would help very much in improving the performance of the system.

Using phonetic feature based edit distance or string similarity as the loss function

in the MERT implementation can improve results significantly. In addition, incor-

porating more model parameters and extensive testing of these parameters might

improve the results of the system. We also plan to introduce a decoding scheme

similar to the substring based transducer [72] to improve the usage of lower order

language models.

5.2.3 Possible Future Work on Phylogenetic Trees

In this direction we intend to use the data with the second sound change for our

experiments and observe whether we are able to improve the results than that of

Krishnamurti [52]. Another direction for this work is to use the penalised likelihood
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methods for estimating the divergence times for the various trees. Although some

work was done in the past for Dravidian languages using Swadesh list [5], the rise of

new techniques in computational biology has reopened the issue whether preparing

the Swadesh list can answer many of the open challenges in Dravidian language family.

We also intend to use the same methods to determine whether there was a terenary or

a binary split in the Dravidian family. For this we intend to use the morpho-syntactic

and phonological data presented in the current edition of Dravidian Languages [51].

Also, not in the near future, we wish to prepare a Swadesh list for Dravidian languages

and apply the above methods for dating the nodes in the family tree.



Appendix A

Phylogenetic trees for a linguistic

area

A.1 Introduction

Establishing relationships among languages which have been in contact for a long

time has been a topic of interest in historical linguistics [19]. However, this topic

has been much less explored in the computational linguistics community. Most of

the previous work is focused on reconstruction of phylogenetic trees for a particular

language family using handcrafted word lists [34, 7, 9, 58] or using synthetic data [11].

In this paper we pose the following questions. What happens when we try to

construct phylogenetic trees using inter-language distances in the context of a lin-

guistic area1? Can the phylogenetic trees be used for evaluating the robustness of

the inter-language distance measures and the meaningfulness of the distances? To

our knowledge these questions have not been addressed previously. As Singh and

Surana [74] showed, corpus based measures can be successfully used for comparative

study of languages. Can these distances, estimated from a noisy corpus2, meaning-

fully be used to construct phylogenetic trees? Can the information represented by

1The term linguistic area or Sprachbund [29] refers to a group of languages that have become
similar in some way as a result of proximity and language contact, even if they belong to different
families. The best known example is the Indian (or South Asian) linguistic area.

2By noisy corpus we mean a corpus that includes wrongly spelled words and spelling variations.

48
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the tree give meaningful interpretations about the languages involved? In this paper,

we try to answer these questions. By using meaningful measures for estimating the

distance between languages, we try to establish that the answers to these questions

are affirmative. Overall, the contributions of the paper are the following a) use a new

measure for estimating language distance b) present results of the experiments on

constructing phylogenetic trees from corpus based word lists rather than handcrafted

ones c) validate the hypothesis that India is a linguistic area [29].

The paper is organized as follows. Related work is discussed in Section 2. A brief

discussion of various inter-language measures is given in Section 3. The experimental

setup and the analysis of the results have been given in Section 4 and Section 5,

respectively. We present a summary of our experiments, analysis of the results and

future directions of the work in Section 6.

A.2 Related Work

In recent years, the methods developed in computational biology [35, 68, 31, 80]

have been successfully adapted in computational linguistics for constructing the phy-

logeny3. All these methods are character based or distance based methods. The

major disadvantage of these approaches is that they require handcrafted lists. More-

over, the methods inspired from glottochronology take a boolean matrix as input,

which denotes the change in the state of the ‘characters’ (the ‘characters’ can be

lexical, morphological or phonological) to infer the phylogenetic trees.

Ellison and Kirby [28] discuss establishing a probability distribution for every

language through intra-lexical comparison using confusion probabilities. They use

normalized edit distance to calculate the probabilities. Then the distance between

every language pair is estimated as a distance between the probability distributions

formed for individual languages. The distances (between languages) are estimated

using KL-divergence and Rao’s distance. The same measures are also used to find

3Phylogeny is the (study of) evolutionary development and history of a species or higher tax-
onomic grouping of organisms. The term is now also used for other things such as tribes and
languages. Phylogenetic trees represent this evolutionary development.
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the level of cognacy between the words. The experiments are conducted on Dyen’s [27]

classical Indo-European dataset. The estimated distances are used for constructing a

phylogenetic tree of the Indo-European languages.

Bouchard-Cote et al. [16], in a novel attempt, combine the advantages of classical

comparative method and the corpus-based probabilistic models. The word forms are

represented by phoneme sequences which undergo stochastic edits along the branches

of a phylogenetic tree. The robustness of the model is proved when it selects the

linguistically attested phylogeny. The stochastic models successfully model the lan-

guage change by using synchronic languages to reconstruct the word forms in Vulgar

Latin and Classical Latin. Although it reconstructs the ancient word forms of the

Romance Languages, a major disadvantage of this model is that some amount of data

of the ancient word forms is required to train the model, which may not be available

in many cases.

In another novel attempt, Singh and Surana [74] used corpus based simple mea-

sures to show that corpus can be used for comparative study of languages. They used

both character n-gram distances and Surface Similarity [75] to identify the potential

cognates4, which in turn are being used to estimate the inter-language distance. Both

diachronic and synchronic experiments are performed and the results very well attest

to the linguistic facts. They also argued that there is a common orthographic as well

as phonetic space for languages with a long history of contact which can be exploited

for developing inter-language (rather than intra-language) measures, in contrast to

the position taken by Ellison and Kirby [28]. Having followed this line of argument, we

explain some corpus measures which we adopted from their work and also use a new

measure which we call phonetic (and orthographic) feature n-gram based distance.

4Potential cognates are words of different languages which are similar in form and therefore are
likely to be cognates. They might include some ‘false friends’, i.e., words which are not etymologically
inherited. It is worthwhile to experiment (using statistical techniques) on potential cognates, even
without removing the ‘false friends’ because a large percentage of them are actually cognates in the
linguistic sense.
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A.3 Inter-Language Measures

Such measures can be broadly divided into three categories. Character n-gram mea-

sures, cognate based measures and feature n-gram measures. The following sections

describe each measure in more detail. One important point that can be mentioned

here is that all the languages we experimented on use Brahmi origin scripts, which

have almost one-to-one correspondence between letters and phonemes. Moreover,

these scripts are similar in a lot of ways, especially the fact that the alphabets used

by them can be seen as subsets of the same abstract alphabet, although the letters

may have different shapes so that to a lay person the scripts seem very different. In

fact, there is a ‘super encoding’ or ‘meta encoding’ called ISCII that can be used to

represent this common alphabet. The letters of this common alphbet can be approx-

imately treated like phonemes for computational purposes. For languages which do

not use such scripts, we will first have to convert the text into a phonetic notation to

be able to use the methods described below, except perhaps the first one.

A.3.1 Symmetric Cross Entropy (SCE)

The first measure is purely a letter n-gram based measure similar to the one used

by Singh [76] for language and encoding identification. Note that since letters in

Brahmi origin scripts can almost be treated like phonemes, we could call this method

a phoneme n-gram based measure. To calculate the distance, letter 5-gram models

are prepared from the corpora of the languages to be compared. Then the n-grams

of all sizes (unigrams, bigrams, etc.) are combined and sorted according to their

probability in descending order. Only the top N n-grams are retained and the rest

are pruned. This is based on the results obtained by Cavnar [20] and validated by

Singh, which show that the top N (300 according to Cavnar) n-grams have a high

correlation with the identity of the language. At this stage there are two probability

distributions which can be compared by a measure of distributional similarity. The

measure used here is symmetric cross entropy:
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dsce =
∑

gl=gm

(p(gl) log q(gm) + q(gm) log p(gl)) (A.1)

where p and q are the probability distributions for the two languages and gl and

gm are n-grams in languages l and m, respectively. The probabilities of bigrams and

larger n-grams are relative frequencies over a single distribution consisting of n-grams

of all sizes up to 5 (the ‘order’ of the n-gram model), not conditional probabilities, as

in standard n-gram models for calculating sequence probabilities.

The disadvantage of this measure is that it does not use any linguistic (e.g., pho-

netic) information, but the advantage is that it can easily measure the similarity of

distributions of n-grams. Such measures have proved to be very effective in auto-

matically identifying languages of text, with accuracies nearing 100% for fairly small

amounts of training and test data [2, 76].

Figure A.1: Phylogenetic tree using SCE

A.3.2 Measures based on Cognate Identification

The other two measures are based on potential cognates, i.e., words of similar form.

Both of them use an algorithm for identification of potential cognates. Many such

algorithms have been proposed. For identifying cognates, Singh and Surana [74] used

the Computational Phonetic Model of Scripts or CPMS [75]. This model takes into

account the characteristics of Brahmi origin scripts and calculates Surface Similarity.

It consists of a model of alphabet that represents the common alphabet for Brahmi
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origin scripts, a model of phonology that maps the letters (which are, for the most

part, phonemes) to phonetic and orthographic features, a Stepped Distance Function

(SDF) that calculates the phonetic and orthographic similarity of two letters and a

dynamic programming (DP) algorithm that calculates the Surface Similarity of two

words or strings. The CPMS was adapted by Singh and Surana for identifying the

potential cognates.

In general, the distance between two strings can be defined as:

clm = fp(wl, wm) (A.2)

where fp is the function (implemented as a DP alignment algorithm) which calculates

Surface Similarity using the CPMS based cost between the word wl of language l and

the word wm of language m.

Those word pairs are identified as cognates which have the least cost.

Cognate Coverage Distance (CCD)

The second measure used is a corpus based estimate of the coverage of cognates

across two languages. Cognate coverage is defined ideally as the number of words

(from the vocabularies of the two languages) which are of the same origin, but which

is approximately estimated by identifying words of similar form (potential cognates).

The decision about whether two words are cognates or not is made on the basis of

Surface Similarity of the two words as described in the previous section. Non-parallel

corpora of the two languages are used for identifying the cognates.

The normalized distance between two languages is defined as:

t′lm = 1 −
tlm

max(t)
(A.3)

where tlm and tml are the number of (potential) cognates found when comparing from

language l to m and from language m to l, respectively.

Since the CPMS based measure of Surface Similarity is asymmetric, the average

number of unidirectional cognates is calculated:
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dccd =
t′lm + t′ml

2
(A.4)

Figure A.2: Phylogenetic tree using CCD

Phonetic Distance of Cognates (PDC)

Simply finding the coverage of cognates may indicate the distance between two lan-

guages, but a measure based solely on this information does not take into account

the variation between the cognates themselves. To include this variation into the

estimate of distance, Singh and Surana [74] used another measure based on the sum

of the CPMS based cost of n cognates found between two languages:

Cpdc
lm =

n
∑

i = 0

clm (A.5)

where n is the minimum of tlm for all the language pairs compared.

The normalized distance can be defined as:

C ′

lm =
Cpdc

lm

max(Cpdc)
(A.6)

A symmetric version of this cost is then calculated:

dpdc =
C ′

lm + C ′

ml

2
(A.7)
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Figure A.3: Phylogenetic tree using PDC

A.3.3 Feature N-Grams (FNG)

The idea in using this measure is that the way phonemes occur together matters less

than the way the phonetic features occur together because phonemes themselves are

defined in terms of the features. Therefore, it makes more sense to a have measure

directly in terms of phonetic features. But since we are experimenting directly with

corpus data (without any phonetic transcription) using the CPMS [75], we also include

some orthographic features as given in the CPMS implementation. The letter to

feature mapping that we use comes from the CPMS. Basically, each word is converted

into a set of sequences of feature-value pairs such that any feature can follow any

feature, which means that the number of sequences for a word of length lw is less

than or equal to (Nf × Nv)
lw , where Nf is the number of possible features and Nv

is the number of possible values. We create sequences of feature-value pairs for all

the words and from this ‘corpus’ of feature-value pair sequences we build the feature

n-gram model.

The formula for calculating distributional similarity based on these phonetic and

orthographic features is the same (SCE) as given in equation 1, except that the

distribution in this case is made up of features rather than letters. Note that since

we do not assume the features to be independent, any feature can follow any other

feature in a feature n-gram. All the permutations are computed before the feature

n-gram model is pruned to keep only the top N feature n-grams. The order of the

n-gram model is kept as 3, i.e., trigrams.
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The feature n-grams are computed as follows. For a given word, each letter is first

converted into a vector consisting of the feature-value pairs which are mapped to it

by the CPMS. Then, from the sequence of vectors of features, all possible sequences

of features up to the length 3 (the order of the n-gram model) are computed. All

these sequences of features (feature n-grams) are added to the n-gram model. Finally

the model is pruned as mentioned above. We expected this measure to work better

because it works at a higher level of abstraction and is more linguistically valid.

Figure A.4: Phylogenetic tree using feature n-grams

A.4 Experimental Setup

Although the languages we selected belong to two different language families, there

are a lot of similarities among them which allow us to choose them for our experi-

ments [29]. The corpora used for our experiments are all part of the CIIL multilingual

corpus. The experiments were conducted using word lists prepared from the raw cor-

pus for every language. No morph analyzer or stemmer has been applied to the words.

Initially the word types with their frequencies are extracted from the corpus. Then

the word types are sorted based on their corresponding frequency. Only the top Nw

of these word types are retained. This is done with the aim of including as much

of the core vocabulary as possible for comparing the languages5. For using cognate

5For our experiments we fixed Nw at 50,000. This number is different from N , the number of
top n-grams that are retained after pruning the n-gram model.
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based measures for estimation of language distance, cognates are extracted from the

word lists between these languages. For feature n-gram measures, the feature n-gram

models are prepared as explained in Section 3.

We calculate the distance between every pair of languages available. We com-

pare the results between all the four measures discussed above by constructing trees

using these measures. The trees are constructed using the NEIGHBOR program in

the PHYLIP package6. The NEIGHBOR programs provides two distance-based tree

construction algorithms: Neighbour Joining and UPGMA. For our experiments we

used Neighbour Joining as it does not assume a constant rate of evolution and it

produces unrooted trees unlike UPGMA which assumes constant rate of evolution

(the length of the leaves from the root of the tree is same across all the leaves) and

produces rooted trees. We do not do any outgrouping as outgrouping makes sense

only when all the languages belong to a single family.

A.5 Analysis of Results

Table 1 shows the results obtained for the four distance measures. Figures 1 to 4

show the trees obtained using all the above measures. There are three subgroupings

of the languages which are clearly visible in all the trees. Namely, Northern Indo-

Aryan (Hindi and Punjabi), Eastern Indo-Aryan (Assamese, Bengali and Oriya) and

Dravidian languages (Tamil, Kannada, Malayalam and Telugu). There are clearly

some similarities in the trees which are generated by all the methods. All the methods

group Hindi and Punjabi, Tamil and Malayalam together. CCD gives the normalized

measure of the number of cognates between every language pair. In the case of CCD

tree, although Bengali and Assamese are grouped together, Oriya is placed incorrectly,

which is correctly placed in the case of feature n-grams.

Oriya is incorrectly grouped with Bengali in the case of PDC tree. The reason

can be because of the huge number of shared words which cause a lower phonetic

distance between the languages. Kannada and Telugu are not grouped together in

the case of PDC. Marathi is either classified with Northern Indo-Aryan languages or

6http://evolution.genetics.washington.edu/phylip/phylip.html
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with Dravidian languages. It is grouped with Indo-Aryan languages in the case of

cognate distance measures and grouped with Dravidian languages in the other cases.

The reason for grouping it with Dravidian languages is the influence of Dravidian

languages due to long history of contact.

The distance of a terminal node from its parent gives very important information7.

For example, Tamil is always at a greater distance from its parent node, although

grouped with Malayalam, compared to other languages. Especially in the case of fea-

ture n-grams and SCE, the distance is very evident. The reason for this is the lower

number of ‘characters’ (elements from which n-grams are made) when compared to

other languages in the case of SCE. In the case of feature n-grams, the lack of phone-

mic distinction in writing between voiced and unvoiced sounds for Tamil decreases

the number of shared feature n-grams. Moreover, the number of borrowings from

Indo-Aryan Languages are comparatively less in the case of Tamil.

7The trees in the figures are not scaled, but the distances are given in the table.
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BN HI KN ML MR OR PA TA TE

AS 0.02 0.39 0.71 0.86 0.61 0.20 0.61 0.93 0.73
0.12 0.25 0.39 0.61 0.45 0.11 0.58 0.95 0.46
0.05 0.30 0.51 0.50 0.43 0.18 0.42 0.70 0.64
0.02 0.06 0.07 0.12 0.09 0.05 0.09 0.13 0.05

BN 0.32 0.68 0.86 0.57 0.07 0.56 0.96 0.70
0.29 0.42 0.64 0.42 0.05 0.56 0.90 0.50
0.29 0.47 0.45 0.43 0.14 0.42 0.74 0.43
0.06 0.07 0.13 0.08 0.04 0.09 0.11 0.02

HI 0.61 0.81 0.42 0.40 0.20 0.93 0.61
0.17 0.56 0.16 0.27 0.16 0.87 0.38
0.43 0.46 0.16 0.33 0.20 0.74 0.34
0.09 0.09 0.06 0.08 0.03 0.15 0.13

KN 0.77 0.68 0.75 0.73 0.88 0.53
0.45 0.17 0.31 0.50 0.82 0.25
0.18 0.38 0.52 0.58 0.42 0.09
0.10 0.09 0.02 0.08 0.10 0.03

ML 0.89 0.88 0.88 0.62 0.72
0.65 0.59 0.77 0.56 0.31
0.42 0.53 0.55 0.07 0.19
0.13 0.13 0.11 0.07 0.15

MR 0.64 0.52 0.95 0.68
0.40 0.37 0.94 0.46
0.34 0.39 0.60 0.30
0.08 0.06 0.13 0.09

OR 0.63 0.98 0.74
0.45 0.89 0.44
0.65 0.83 0.64
0.07 0.10 0.00

PA 0.90 0.71
0.90 0.59
0.92 0.48
0.14 0.07

TA 0.85
0.81
0.39
0.08

AS: Assamese, BN: Bengali, HI: Hindi, KN: Kannada
ML: Malayalam, MR: Marathi, OR: Oriya,

PA: Punjabi, TA: Tamil, TE: Telugu

Table A.1: Inter-language comparison among ten major South Asian languages using
four corpus based measures. The values have been normalized and scaled to be
somewhat comparable. Each cell contains four values: by CCD, PDC, SCE and
FNG.



Appendix B

Machine Transliteration as a SMT

Problem

B.1 Introduction

Transliteration can be defined as the task of transcribing the words from a source

script to a target script [78]. Transliteration systems find wide applications in Cross

Lingual Information Retrieval Systems (CLIR) and Machine Translation (MT) sys-

tems. The systems also find use in sentence aligners and word aligners [6]. Transcrib-

ing the words from one language to another language without the use of a bilingual

lexicon is a challenging task as the output word produced in target language should

be such that it is acceptable to the readers of the target language. The difficulty arises

due to the huge number of Out Of Vocabulary (OOV) words which are continuously

added into the language. These OOV words include named entities, technical words,

borrowed words and loan words.

In this paper we present a technique for transliterating named entities from English

to Hindi using a small set of training and development data. The paper is organised

as follows. A survey of the previous work is presented in the next subsection. Section

2 describes the problem modeling which we have adopted from [63] which they use for

L2P task. Section 3 describes how the parameters are tuned for optimal performance.

A brief description of the data sets is provided in Section 4. Section 5 has the results

60
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which we have obtained for the test data. Finally we conclude with a summary of

the methods and a analysis of the errors.

B.1.1 Previous Work

Surana and Singh [78] propose a transliteration system in which they use two different

ways of transliterating the named entities based on their origin. A word is classified

into two classes either Indian or foreign using character based n-grams. They report

their results on Telugu and Hindi data sets. Sherif and Kondrak [71] propose a

hybrid approach in which they use the Veterbi-based monotone search algorithm for

searching the possible candidate transliterations. Using the approach given in [66]

the sub-string translations are learnt. They integrate the word-based unigram model

based on [39, 4] with the above model for improving the quality of transliterations.

Malik et al [53] try to solve a special case of transliteration for Punjabi in which

they convert from Shahmukhi (Arabic script) to Gurumukhi using a set of transliter-

ation rules. Abdul Jaleel et al [1] show that, in the domain of information retrieval,

the cross language retrieval performance was reduced by 50% when the name entities

were not transliterated.

B.2 Problem Modeling

Assume that given a word, represented as a sequence of letters of the source language

s = sJ
1 = s1...sj...sJ , needs to be transcribed as a sequence of letters in the target

language, represented as t = tI1 = t1...ti...tI . The problem of finding the best target

language letter sequence among the transliterated candidates can be represented as:

tbest = arg max
t

{Pr (t | s)} (B.1)

We model the transliteration problem based on the noisy channel model. Refor-

mulating the above equation using Bayes Rule:

tbest = arg max
t

p (s | t) p (s) (B.2)
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This formulation allows for a target language letters’ n-gram model p (t) and a

transcription model p (s | t). Given a sequence of letters s, the argmax function is a

search function to output the best target letter sequence.

From the above equation, the best target sequence is obtained based on the prod-

uct of the probabilities of transcription model and the probabilities of a language

model and their respective weights. The method for obtaining the transcription

probabilities is described briefly in the next section. Determining the best weights

is necessary for obtaining the right target language sequence. The estimation of the

models’ weights can be done in the following manner.

The posterior probability Pr (t | s) can also be directly modeled using a log-linear

model. In this model, we have a set of M feature functions hm(t, s),m = 1...M . For

each feature function there exists a weight or model parameter λm,m = 1...M . Thus

the posterior probability becomes:

Pr (t | s) = pλM

1

(t | s) (B.3)

=
exp

[

ΣM
m=1λmhm(t, s)

]

∑

t́I
1

exp
[

ΣM
m=1λmhm(t́I1, s)

] (B.4)

with the denominator, a normalization factor that can be ignored in the maximization

process.

The above modeling entails finding the suitable model parameters or weights which

reflect the properties of our task. We adopt the criterion followed in [60] for optimising

the parameters of the model. The details of the solution and proof for the convergence

are given in [60]. The models’ weights, used for the transliteration task, are obtained

from this training.

All the above tools are available as a part of publicly available MOSES [40] tool

kit. Hence we used the tool kit for our experiments.
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B.3 Tuning the parameters

The source language to target language letters are aligned using GIZA++ [61]. Every

letter is treated as a single word for the GIZA++ input. The alignments are then

used to learn the phrase transliteration probabilities which are estimated using the

scoring function given in [42].

The parameters which have a major influence on the performance of a phrase-

based SMT model are the alignment heuristics, the maximum phrase length (MPR)

and the order of the language model [42]. In the context of transliteration, phrase

means a sequence of letters(of source and target language) mapped to each other with

some probability (i.e., the hypothesis) and stored in a phrase table. The maximum

phrase length corresponds to the maximum number of letters that a hypothesis can

contain. Higher phrase length corresponds a larger phrase table during decoding.

We have conducted experiments to see which combination gives the best output.

We initially trained the model with various parameters on the training data and tested

for various values of the above parameters. We varied the maximum phrase length

from 2 to 7. The language model was trained using SRILM toolkit [77]. We varied

the order of language model from 2 to 8. We also traversed the alignment heuristics

spectrum, from the parsimonious intersect at one end of the spectrum through grow,

grow-diag, grow-diag-final, grow-diag-final-and and srctotgt to the most lenient union

at the other end.

We observed that the best results were obtained when the language model was

trained on 7-gram and the alignment heuristic was grow-diag-final. No significant

improvement was observed in the results when the value of MPR was greater than 7.

We have taken care such that the alignments are always monotonic and no letter was

left unlinked.

B.4 Data Sets

Prior to the release of the test data only the training data and development data

was available. The training data and development data consisted of a parallel corpus
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having entries in both English and Hindi. The training data and development data

had 9975 entries and 974 entries. We used the training data given as a part of the

shared task for generating the phrase table and the language model. For tuning the

parameters mentioned in the previous section, we used the development data.

From the training and development data we have observed that the words can

be roughly divided into following categories, Persian, European (primarily English),

Indian, Arabic words, based on their origin. The test data consisted of 1000 entries.

We proceeded to experiment with the test set once the set was released.

B.5 Experiments and Results

The parameters described in Section 3 were the initial settings of the system. The

system was tuned on the development set, as described in Section 2, for obtaining the

appropriate model weights. The system tuned on the development data was used to

test it against the test data set. We have obtained the following model weights.

language model = 0.099

translation model = 0.122

Prior to the release of the test data, we tested the system without tuning on de-

velopment data. The default model weights were used to test our system on the

development data. In the next step the model weights were obtained by tuning

the system. Although the system allows for a distortion model, allowing for phrase

movements, we did not use the distortion model as distortion is meaningless in the

domain of transliteration. The following measures were used to evaluate our system

performance. Word Accuracy (ACC), Mean F-Score, Mean Reciprocal Rank (MRR),

MAPref , MAP10, MAPsys. A detailed description of each measure is available in 1.

1https://translit.i2r.a-star.edu.sg/news2009/whitepaper/
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Measure Result
ACC 0.463
Mean F-Score 0.876
MRR 0.573
MAPref 0.454
MAP10 0.201
MAPsys 0.201

Table B.1: Evaluation of Various Measures on Test Data

B.6 Conclusion

In this paper we show that we can use the popular phrase based SMT systems success-

fully for the task of transliteration. The publicly available tool GIZA++ was used to

align the letters. Then the phrases were extracted and counted and stored in phrase

tables. The weights were estimated using minimum error rate training as described

earlier using development data. Then A* based decoder was used to transliterate

the English words into Hindi. After the release of the reference corpora we examined

the error results and observed that majority of the errors resulted in the case of the

foreign origin words.
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