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ABSTRACT

Computational analysis of historical and typological data has made great progr-
ess in the last fifteen years. In this thesis, we work with vocabulary lists for
addressing some classical problems in historical linguistics such as discrimi-
nating related languages from unrelated languages, assigning possible dates to
splits in a language family, employing structural similarity for language classi-
fication, and providing an internal structure to a language family. In this thesis,
we compare the internal structure inferred from vocabulary lists to the family
tree structure inferred through the comparative method. We also explore the
ranking of lexical items in the widely used Swadesh word list and compare our
ranking to another quantitative reranking method and short lists composed for
discovering long-distance genetic relationships. We also show that the choice
of string similarity measures is important for internal classification and for dis-
criminating related from unrelated languages. The dating system presented in
this thesis can be used for assigning age estimates to any new language group
and overcomes the criticism of constant rate of lexical change assumed by
glottochronology. An important conclusion from these results is that n-gram
approaches can be used for different historical linguistic purposes. The field
is undergoing a shift from – the application of computational methods to –
short, hand-crafted vocabulary lists to automatically extracted word lists from
corpora. Thus, we also experiment with parallel corpora for automatically ex-
tracting cognates to infer a family tree from the cognates.
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SAMMANFATTNING

Datorbaserad analys av historiska data har gjort stora framsteg under det sen-
aste decenniet. I denna licentiatuppsats använder vi ordlistor för att ta oss an
några klassiska problem inom historisk lingvistik. Exempel på sådana problem
är hur man avgör vilka språk som är släkt med varandra och vilka som inte
är det, hur man tidsbestämmer rekonstruerade urspråk, hur man klassificerar
språk på grundval av strukturella likheter och skillnader, samt hur man sluter
sig till den interna strukturen i en språkfamilj (dess ‘familjeträd’).

I uppsatsen jämför vi metoder som använts för att postulera språkliga fa-
miljeträd. Specifikt jämför vi ordlistebaserade metoder med den traditionella
komparativa metoden, som även använder andra språkliga drag för jämförelsen.
Med fokus på ordlistor jämför vi den ofta använda Swadesh-listan med al-
ternativa listor föreslagna i litteraturen eller framtagna i vår egen forskning,
med avseende på deras användbarhet för att angripa de nämnda historisk-
lingvistiska problemen.

Vi visar också i experiment att valet av likhetsmått är mycket betydelsefullt
när strängjämförelser används för att bestämma den interna strukturen i en
språkfamilj eller för att skilja besläktade och obesläktade språk åt. Ett viktigt
resultat av dessa experiment är att n-grambaserade metoder lämpar sig mycket
väl för flera olika språkhistoriska ändamål.

De metoder för språklig datering som presenteras här kan användas för att
tidsbestämma nya språkfamiljer, dock utan att vara beroende av antagandet att
förändringen av ett språks basordförråd är konstant över tid, ett hårt kritiserat
antagande som ligger till grund för glottokronologin som den ursprungligen
formulerades.

Metodologiskt har man inom området nu börjat utforska möjligheten att
övergå från att arbeta med korta, på förhand givna ordlistor till att tillämpa
språkteknologiska metoder på stora språkliga material, t ex hela (traditionella)
lexikon eller strukturerat språkligt material som extraheras ur flerspråkiga kor-
pusar. I uppsatsen utforskas användningen av parallella korpusar för att auto-
matiskt finna ord med ett gemensamt ursprung (kognater) och därefter härleda
ett språkligt familjeträd från kognatlistorna.
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1 INTRODUCTION

This licentiate thesis can be viewed as an attempt at applying techniques from
Language Technology (LT; also known as Natural Language Processing [NLP]
or Computational Linguistics [CL]) to the traditional historical linguistics prob-
lems such as dating of language families, structural similarity vs genetic simi-
larity, and language classification.

There are more than 7,000 languages in this world (Lewis, Simons and
Fennig 2013) and more than 100,000 unique languoids (Nordhoff and Ham-
marström 2012; it is known as Glottolog) where a languoid is defined as a
set of documented and closely related linguistic varieties. Modern humans ap-
peared on this planet about 100,000–150,000 years ago (Vigilant et al. 1991;
Nettle 1999a). Given that all modern humans descended from a small African
ancestral population, did all the 7,000 languages descend from a common lan-
guage? Did language emerge from a single source (monogenesis) or from mul-
tiple sources at different times (polygenesis)? A less ambitious question would
be if there are any relations between these languages? Or do these languages
fall under a single family – descended from a single language which is no
longer spoken – or multiple families? If they fall under multiple families, how
are they related to each other? What is the internal structure of a single lan-
guage family? How old is a family or how old are the intermediary members
of a family? Can we give reliable age estimates to these languages? This thesis
attempts to answer these questions. These questions come under the scientific
discipline of historical linguistics. More specifically, this thesis operates in the
subfield of computational historical linguistics.

1.1 Computational historical linguistics

This section gives a brief introduction to historical linguistics and then to the
related field of computational historical linguistics.1

1To the best of our knowledge, Lowe and Mazaudon (1994) were the first to use the term.
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4 Introduction

1.1.1 Historical linguistics

Historical linguistics is the oldest branch of modern linguistics. Historical lin-
guistics is concerned with language change, the processes introducing the lan-
guage change and also identifying the (pre-)historic relationships between lan-
guages (Trask 2000: 150). This branch works towards identifying the not-so-
apparent relations between languages. The branch has succeeded in identifying
the relation between languages spoken in the Indian sub-continent, the Uyghur
region of China, and Europe; the languages spoken in Madagascar islands and
the remote islands in the Pacific Ocean.

A subbranch of historical linguistics is comparative linguistics. According
to Trask (2000: 65), comparative linguistics is a branch of historical linguistics
which seeks to identify and elucidate genetic relationships among languages.
Comparative linguistics works through the comparison of linguistic systems.
Comparativists compare vocabulary items (not any but following a few general
guidelines) and morphological forms; and accumulate the evidence for lan-
guage change through systematic sound correspondences (and sound shifts) to
propose connections between languages descended through modification from
a common ancestor.

The work reported in this thesis lies within the area of computational his-
torical linguistics which relates to the application of computational techniques
to address the traditional problems in historical linguistics.

1.1.2 What is computational historical linguistics?

The use of mathematical and statistical techniques to classify languages (Kroe-
ber and Chrétien 1937) and evaluate the language relatedness hypothesis (Kroe-
ber and Chrétien 1939; Ross 1950; Ellegård 1959) has been attempted in the
past. Swadesh (1950) invented the method of lexicostatistics which works with
standardized vocabulary lists but the similarity judgment between the words is
based on cognacy rather than the superficial word form similarity technique of
multilateral comparison (Greenberg 1993: cf. section 2.4.2). Swadesh (1950)
uses cognate counts to posit internal relationships between a subgroup of a lan-
guage family. Cognates are related words across languages whose origin can
be traced back to a (reconstructed or documented) word in a common ances-
tor. Cognates are words such as Sanskrit dva and Armenian erku ‘two’ whose
origin can be traced back to a common ancestor. Cognates usually have similar
form and also similar meaning and are not borrowings (Hock 1991: 583–584).
The cognates were not identified through a computer but by a manual proce-
dure beforehand to arrive at the pair-wise cognate counts.
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Hewson 1973 (see Hewson 2010 for a more recent description) can be
considered the first such study where computers were used to reconstruct the
words of Proto-Algonquian (the common ancestor of Algonquian language
family). The dictionaries of four Algonquian languages – Fox, Cree, Ojibwa,
and Menominee – were converted into computer-readable format – skeletal
forms, only the consonants are fed into the computer and vowels are omitted
– and then project an ancestral form (proto-form; represented by a *) for a
word form by searching through all possible sound-correspondences. The pro-
jected proto-forms for each language are alphabetically sorted to yield a set
of putative proto-forms for the four languages. Finally, a linguist with suffi-
cient knowledge of the language family would then go through the putative
proto-list and remove the unfeasible cognates.

CHL aims to design computational methods to identify linguistic differ-
ences between languages based on different aspects of language: phonology,
morphology, lexicon, and syntax. CHL also includes computational simula-
tions of language change in speech communities (Nettle 1999b), simulation of
disintegration (divergence) of proto-languages (De Oliveira, Sousa and Wich-
mann 2013), the relation between population sizes and rate of language change
(Wichmann and Holman 2009a), and simulation of the current distribution of
language families (De Oliveira et al. 2008). Finally, CHL proposes and studies
formal and computational models of linguistic evolution through language ac-
quisition (Briscoe 2002), computational and evolutionary aspects of language
(Nowak, Komarova and Niyogi 2002; Niyogi 2006).

In practice, historical linguists work with word lists – selected words which
are not nursery forms, onomatopoeic forms, chance similarities, and borrow-
ings (Campbell 2003) – for the majority of the time. Dictionaries are a natural
extension to word lists (Wilks, Slator and Guthrie 1996). Assuming that we
are provided with bilingual dictionaries of some languages, can we simulate
the task of a historical linguist? How far can we automate the steps of weeding
out borrowings, extracting sound correspondences, and positing relationships
between languages? An orthogonal task to language comparison is the task of
the comparing the earlier forms of an extant language to its modern form.

A related task in comparative linguistics is internal reconstruction. Internal
reconstruction seeks to identify the exceptions to patterns present in extant
languages and then reconstruct the regular patterns in the older stages. The
laryngeal hypothesis in the Proto-Indo-European (PIE) is a classical case of
internal reconstruction. Saussure applied internal reconstruction to explain the
aberrations in the reconstructed root structures of PIE.

PIE used vowel alternations such as English sing/sang/sung – also known
as ablaut or apophony – for grammatical purposes (Trask 1996: 256). The gen-
eral pattern for root structures was CVC with V reconstructed as *e. However
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there were exceptions to the reconstructed root of the forms such as CV̄- or
VC- where V could be *a or *o. Saussure conjectured that there were three
consonants: h1, h2, h3 in pre-PIE. Imagining each consonant as a function
which operates on vowels **e, **a and **o; h1 would render **e > *e; h2
renders **e > *a; h3 renders **e > *o.2 Finally, the consonant in pre-vocalic
position affected the vowel quality and in post-vocalic position, it also affected
the preceding vowel length through compensatory lengthening. This conjec-
ture was corroborated through the discovery of the [h

ˇ
] consonant in Hittite

texts.
The following excerpt from the Lord’s Prayer shows the differences be-

tween Old English (OE) and current-day English (Hock 1991: 2–3):

Fæder ūre þū þe eart on heofonum,
Sī þīn nama ġehālgod.

‘Father of ours, thou who art in heavens,
Be thy name hallowed.’

In the above excerpt, Old English (OE) eart is the ancestor to English art
‘are’ which is related to PIE *h1er-. The OE sī (related to German sind) and
English be are descendants from different PIE roots *h1es- and *bhuh2- but
serve the same purpose.

The work reported in this thesis attempts to devise and apply computational
techniques (developed in LT) to both hand-crafted word lists as well as auto-
matically extracted word lists from corpora.

An automatic mapping of the words in digitized text, from the middle ages,
to the current forms would be a CHL task. Another task would be to iden-
tify the variations in written forms and normalize the orthographic variations.
These tasks fall within the field of NLP for historical texts (Piotrowski 2012).
For instance, deriving the suppletive verbs such as go, went or adjectives good,
better, best from ancestral forms or automatically identifying the correspond-
ing cognates in Sanskrit would also be a CHL task.

There has been a renewed interest in the application of computational and
quantitative techniques to the problems in historical linguistics for the last fif-
teen years. This new wave of publications has been met with initial skepticism
which lingers from the past of glottochronology.3 However, the initial skep-
ticism has given way to consistent work in terms of methods (Agarwal and
Adams 2007), workshop(s) (Nerbonne and Hinrichs 2006), journals (Wich-
mann and Good 2011), and an edited volume (Borin and Saxena 2013).

2** denotes a pre-form in the proto-language.
3See Nichols and Warnow (2008) for a survey on this topic.
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The new wave of CHL publications are co-authored by linguists, computer
scientists, computational linguists, physicists and evolutionary biologists. Ex-
cept for sporadic efforts (Kay 1964; Sankoff 1969; Klein, Kuppin and Meives
1969; Durham and Rogers 1969; Smith 1969; Wang 1969; Dobson et al.
1972; Borin 1988; Embleton 1986; Dyen, Kruskal and Black 1992; Kessler
1995; Warnow 1997; Huffman 1998; Nerbonne, Heeringa and Kleiweg
1999), the area was not very active until the work of Gray and Jordan 2000,
Ringe, Warnow and Taylor 2002, and Gray and Atkinson 2003. Gray and
Atkinson (2003) employed Bayesian inference techniques, originally devel-
oped in computational biology for inferring the family trees of species, based
on the lexical cognate data of Indo-European family to infer the family tree. In
LT, Bouchard-Côté et al. (2013) employed Bayesian techniques to reconstruct
Proto-Austronesian forms for a fixed-length word lists belonging to more than
400 modern Austronesian languages.

The work reported in this thesis is related to the well-studied problems of
approximate matching of string queries in database records using string sim-
ilarity measures (Gravano et al. 2001), automatic identification of languages
in a multilingual text through the use of character n-grams and skip grams,
approximate string matching for cross-lingual information retrieval (Järvelin,
Järvelin and Järvelin 2007), and ranking of documents in a document retrieval
task. The description of the tasks and the motivation and its relation to the work
reported in the thesis are given below.

The task of approximate string matching of queries with database records
can be related to the task of cognate identification. As noted before, another re-
lated but sort of inverse task is the detection of borrowings. Lexical borrowings
are words borrowed into a language from an external source. Lexical borrow-
ings can give a spurious affiliation between languages under consideration.
For instance, English borrowed a lot of words from the Indo-Aryan languages
(Yule and Burnell 1996) such as bungalow, chutney, shampoo, and yoga. If we
base a genetic comparison on these borrowed words, the comparison would
suggest that English is more closely related to the Indo-Aryan languages than
the other languages of IE family. One task of historical linguists is to identify
borrowings between languages which are known to have contact. A much gen-
eralization of the task of identifying borrowings between languages with no
documented contact history. Chance similarities are called false friends by his-
torical linguists. One famous example from Bloomfield 1935 is Modern Greek
mati and Malay mata ‘eye’. However, these languages are unrelated and the
words are similar only through chance resemblance.

The word pair Swedish ingefära and Sanskrit sr
˚

ngavera ‘ginger’ have simi-
lar shape and the same meaning. However, Swedish borrowed the word from a
different source and nativized the word to suit its own phonology. It is known
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that Swedish never had any contact with Sanskrit speakers and still has this
word as a cultural borrowing. Another task would be to automatically identify
such indirect borrowings between languages with no direct contact (Wang and
Minett 2005). Nelson-Sathi et al. (2011) applied a network model to detect the
hidden borrowing in the basic vocabulary lists of Indo-European.

The task of automated language identification (Cavnar and Trenkle 1994)
can be related to the task of automated language classification. A language
identifier system consists of multilingual character n-gram models, where each
character n-gram model corresponds to a single language. A character n-gram
model is trained on set of texts of a language. The test set consisting of a mul-
tilingual text is matched to each of these language models to yield a probable
list of languages to which each word in the test set belongs to. Relating to the
automated language classification, an n-gram model can be trained on a word
list for each language and all pair-wise comparisons of the n-gram models
would yield a matrix of (dis)similarities – depending on the choice of similar-
ity/distance measure – between the languages. These pair-wise matrix scores
are supplied as input to a clustering algorithm to infer a hierarchical structure
to the languages.

Until now, I have listed and related the parallels between various challenges
faced by a traditional historical linguist and the challenges in CHL. LT methods
are employed to address research questions within the computational historical
linguistics field. Examples of such applications are listed below.

• Historical word form analysis. Applying string similarity measures to
map orthographically variant word forms in Old Swedish to the lemmas
in an Old Swedish dictionary (Adesam, Ahlberg and Bouma 2012).

• Deciphering extinct scripts. Character n-grams (along with symbol en-
tropy) have been employed to decipher foreign languages (Ravi and
Knight 2008). Reddy and Knight (2011) analyze an undeciphered manu-
script using character n-grams.

• Tracking language change. Tracking semantic change (Gulordava and
Baroni 2011),4 orthographic changes and grammaticalization over time
through the analysis of corpora (Borin et al. 2013).

• Application in SMT (Statistical Machine Translation). SMT techniques
are applied to annotate historical corpora, Icelandic from the 14th cen-
tury, through current-day Icelandic (Pettersson, Megyesi and Tiedemann
2013). Kondrak, Marcu and Knight (2003) employ cognates in SMT

4How lexical items acquire a different meaning and function over time. Such as Latin hostis
‘enemy, foreigner, and stranger’ from PIE’s original meaning of ‘stranger’.
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models to improve the translation accuracy. Guy (1994) designs an al-
gorithm for identifying cognates in bi-lingual word lists and attempts to
apply it in machine translation.

1.2 Questions, answers, and contributions

This thesis aims to address the following problems in historical linguistics
through the application of computational techniques from LT and IE/IR:

I. Corpus-based phylogenetic inference. In the age of big data (Lin and
Dyer 2010), can language relationships be inferred from parallel corpora?
Paper I entitled Estimating language relationships from a parallel corpus
presents results on inferring language relations from the parallel corpora
of the European Parliament’s proceedings. We apply three string similar-
ity techniques to sentence-aligned parallel corpora of 11 European lan-
guages to infer genetic relations between the 11 languages. The paper is
co-authored with Lars Borin and is published in NODALIDA 2011 (Rama
and Borin 2011).

II. Lexical Item stability. The task here is to generate a ranked list of con-
cepts which can be used for investigating the problem of automatic lan-
guage classification. Paper II titled N-gram approaches to the historical
dynamics of basic vocabulary presents the results of the application of n-
gram techniques to the vocabulary lists for 190 languages. In this work,
we apply n-gram (language models) – widely used in LT tasks such as
SMT, automated language identification, and automated drug detection
(Kondrak and Dorr 2006) – to determine the concepts which are resis-
tant to the effects of time and geography. The results suggest that the
ranked item list agrees largely with two other vocabulary lists proposed
for identifying long-distance relationship. The paper is co-authored with
Lars Borin and is accepted for publication in the peer-reviewed Journal
of Quantitative Linguistics (Rama and Borin 2013).

III. Structural similarity and genetic classification. How well can structural
relations be employed for the task of language classification? Paper III
titled How good are typological distances for determining genealogical
relationships among languages? applies different vector similarity mea-
sures to typological data for the task of language classification. We apply
14 vector similarity techniques, originally developed in the field of IE/IR,
for computing the structural similarity between languages. The paper is
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co-authored with Prasanth Kolachina and is published as a short paper in
COLING 2012 (Rama and Kolachina 2012).

IV. Estimating age of language groups. In this task, we develop a system for
dating the split/divergence of language groups present in the world’s lan-
guage families. Quantitative dating of language splits is associated with
glottochronology (a severely criticized quantitative technique which as-
sumes that the rate of lexical replacement for a time unit [1000 years] in
a language is constant; Atkinson and Gray 2006). Paper IV titled Phono-
tactic diversity and time depth of language families presents a n-gram
based method for automatic dating of the world’s languages. We apply
n-gram techniques to a carefully selected set of languages from different
language families to yield baseline dates. This work is solely authored by
me and is published in the peer-reviewed open source journal PloS ONE
(Rama 2013).

V. Comparison of string similarity measures for automated language clas-
sification. A researcher attempting to carry out an automatic language
classification is confronted with the following methodological problem.
Which string similarity measure is the best for the tasks of discriminat-
ing related languages from the rest of unrelated languages and also for
the task of determining the internal structure of the related languages?
Paper V, Evaluation of similarity measures for automatic language clas-
sification is a book chapter under review for a proposed edited volume.
The paper discusses the application of 14 string similarity measures to
a dataset constituting more than half of the world’s languages. In this
paper, we apply a statistical significance testing procedure to rank the
performance of string similarity measures based on pair-wise similarity
measures. This paper is co-authored with Lars Borin and is submitted to a
edited volume, Sequences in Language and Text (Rama and Borin 2014).

The contributions of the thesis are summarized below:

• Paper I should actually be listed as the last paper since it works with
automatically extracted word lists – the next step in going beyond hand-
crafted word lists (Borin 2013a). The experiments conducted in the pa-
per show that parallel corpora can be used to automatically extract cog-
nates (in the sense used in historical linguistics) and then used to infer a
phylogenetic tree.

• Paper II develops an n-gram based procedure for ranking the items in a
vocabulary list. The paper uses 100-word Swadesh lists as the point of
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departure and works with more than 150 languages. The n-gram based
procedure shows that n-grams, in various guises, can be used for quan-
tifying the resistance to lexical replacement across the branches of a
language family.

• Paper III attempts to address the following three tasks: (a) Compari-
son of vector similarity measures for computing typological distances;
(b) correlating typological distances with genealogical classification de-
rived from historical linguistics; (c) correlating typological distances
with the lexical distances computed from 40-word Swadesh lists. The
paper also uses graphical devices to show the strength and direction of
correlations.

• Paper IV introduces phonotactic diversity as a measure of language di-
vergence, language group size, and age of language groups. The combi-
nation of phonotactic diversity and lexical divergence are used to predict
the dates of splits for more than 50 language families.

• It has been noted that a particular string distance measure (Levenshtein
distance or its phonetic variants: McMahon et al. 2007; Huff and Lons-
dale 2011) is used for language distance computation purposes. How-
ever, string similarities is a very well researched topic in computer sci-
ence (Smyth 2003) and computer scientists developed various string
similarity measures for many practical applications. There is certainly
a gap in CHL regarding the performance of other string similarity mea-
sures in the tasks of automatic language classification and inference of
internal structures of language families. Paper V attempts to fill this gap.
The paper compares the performance of 14 different string similarity
techniques for the aforementioned purpose.

1.3 Overview of the thesis

The thesis is organized as follows. The first part of the thesis gives an intro-
duction to the papers included in the second part of the thesis.

Chapter 2 introduces the background in historical linguistics and discusses
the different methods used in this thesis from a linguistic perspective. In this
chapter, the concepts of sound change, semantic change, structural change,
reconstruction, language family, core vocabulary, time-depth of language fam-
ilies, item stability, models of language change, and automated language clas-
sification are introduced and discussed. This chapter also discusses the com-
parative method in relation to the statistical LT learning paradigm of semi-
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supervised learning (Yarowsky 1995; Abney 2004, 2010). Subsequently, the
chapter proceeds to discuss the related computational work in the domain of
automated language classification. We also propose a language classification
system which employs string similarity measures for discriminating related
languages from unrelated languages and internal classification. Any classifica-
tion task requires the selection of suitable techniques for evaluating a system.

Chapter 3 discusses different linguistic databases developed during the
last fifteen years. Although each chapter in part II has a section on linguis-
tic databases, the motivation for the databases’ development is not considered
in detail in each paper.

Chapter 4 summarizes and concludes the introduction to the thesis and dis-
cusses future work.

Part II of the thesis consists of four peer-reviewed publications and a book
chapter under review. Each paper is reproduced in its original form leading to
slight repetition. Except for paper II, rest of the papers are presented in the
chronological order of their publication. Paper II is placed after paper I since
paper II focuses on ranking of lexical items by genetic stability. The ranking
of lexical items is an essential task that precedes the CHL tasks presented in
papers III–V.

All the experiments in the papers I, II, IV, and V were conducted by me. The
experiments in paper III were designed and conducted by myself and Prasanth
Kolachina. The paper was written by myself and Prasanth Kolachina. In papers
I, II, and V, analysis of the results and the writing of the paper were performed
by myself and Lars Borin. The experiments in paper IV were designed and
performed by myself. I am the sole author of paper IV.

The following papers are not included in the thesis but were published or
are under review during the last three years:

1. Kolachina, Sudheer, Taraka Rama and B. Lakshmi Bai 2011. Maximum
parsimony method in the subgrouping of Dravidian languages. QITL 4:
52–56.

2. Wichmann, Søren, Taraka Rama and Eric W. Holman 2011. Phonolog-
ical diversity, word length, and population sizes across languages: The
ASJP evidence. Linguistic Typology 15: 177–198.

3. Wichmann, Søren, Eric W. Holman, Taraka Rama and Robert S. Walker
2011. Correlates of reticulation in linguistic phylogenies. Language Dy-
namics and Change 1 (2): 205–240.

4. Rama, Taraka and Sudheer Kolachina 2013. Distance-based phyloge-
netic inference algorithms in the subgrouping of Dravidian languages.
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Lars Borin and Anju Saxena (eds), Approaches to measuring linguistic
differences, 141–174. Berlin: De Gruyter, Mouton.

5. Rama, Taraka, Prasant Kolachina and Sudheer Kolachina 2013. Two
methods for automatic identification of cognates. QITL 5: 76.

6. Wichmann, Søren and Taraka Rama. Submitted. Jackknifing the black
sheep: ASJP classification performance and Austronesian. For the pro-
ceedings of the symposium “Let’s talk about trees”, National Museum
of Ethnology, Osaka, Febr. 9-10, 2013.
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2 COMPUTATIONAL

HISTORICAL LINGUISTICS

This chapter is devoted to an in-depth survey of the terminology used in the pa-
pers listed in part II of the thesis. This chapter covers related work in the topics
of linguistic diversity, processes of language change, computational model-
ing of language change, units of genealogical classification, core vocabulary,
time-depth, automated language classification, item stability, and corpus-based
historical linguistics.

2.1 Differences and diversity

As noted in chapter 1, there are more than 7,000 living languages in the world
according to Ethnologue (Lewis, Simons and Fennig 2013) falling into more
than 400 families (Hammarström 2010). The following questions arise with
respect to linguistic differences and diversity:

• How different are languages from each other?

• Given that there are multiple families of languages, what is the variation
inside each family? How divergent are the languages falling in the same
family?

• What are the common and differing linguistic aspects in a language fam-
ily?

• How do we measure and arrive at a numerical estimate of the differences
and diversity? What are the units of such comparison?

• How and why do these differences arise?

The above questions can be addressed in the recent frameworks proposed
in evolutionary linguistics (Croft 2000) which attempt to explain the language
differences in the evolutionary biology frameworks of Dawkins 2006 and Hull
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2001. Darwin (1871) himself had noted the parallels between biological evo-
lution and language evolution. Atkinson and Gray (2005) provide a historical
survey of the parallels between biology and language. Darwin makes the fol-
lowing statement regarding the parallels (Darwin 1871: 89–90).

The formation of different languages and of distinct species, and the
proofs that both have been developed through a gradual process, are cu-
riously parallel [. . . ] We find in distinct languages striking homologies
due to community of descent, and analogies due to a similar process of
formation.

The nineteenth century linguist Schleicher (1853) proposed the stammbaum
(family tree) device to show the differences as well as similarities between
languages. Atkinson and Gray (2005) also observe that there has been a cross-
pollination of ideas between biology and linguistics before Darwin. Table 2.1
summarizes the parallels between biological and linguistic evolution. I prefer
to see the table as a guideline rather than a hard fact due to the following
reasons:

• Biological drift is not the same as linguistic drift. Biological drift is ran-
dom change in gene frequencies whereas linguistic drift is the tendency
of a language to keep changing in the same direction over several gener-
ations (Trask 2000: 98).

• Ancient texts do not contain all the necessary information to assist a
comparative linguist in drawing the language family history but a suf-
ficient sample of DNA (extracted from a well-preserved fossil) can be
compared to other biological family members to draw a family tree. For
instance, the well-preserved finger bone of a species of Homo family
(from Denisova cave in Russia; henceforth referred to as Denisovan)
was compared to Neanderthals and modern humans. The comparison
showed that Neanderthals, modern humans, and Denisovans shared a
common ancestor (Krause et al. 2010).

Croft (2008) summarizes the various efforts to explain the linguistic differ-
ences in the framework of evolutionary linguistics. Croft also notes that histor-
ical linguists have employed biological metaphors or analogies to explain lan-
guage change and then summarized the various evolutionary linguistic frame-
works to explain language change. In evolutionary biology, some entity repli-
cates itself either perfectly or imperfectly over time. The differences resulting
from imperfect replication leads to differences in a population of species which
over the time leads to splitting of the same species into different species. The
evolutionary change is a two-step process:
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Biological evolution Linguistic evolution

Discrete characters Lexicon, syntax, and phonology
Homologies Cognates
Mutation Innovation
Drift Drift
Natural selection Social selection
Cladogenesis Lineage splits
Horizontal gene transfer Borrowing
Plant hybrids Language Creoles
Correlated genotypes/phenotypes Correlated cultural terms
Geographic clines Dialects/dialect chains
Fossils Ancient texts
Extinction Language death

Table 2.1: Parallels between biological and linguistic evolution (Atkinson and Gray
2005).

• The generation of variation in the replication process.

• Selection of a variant from the pool of variants.

Dawkins (2006) employs the selfish-gene concept that the organism is only
a vector for the replication of the gene. The gene itself is generalized as a repli-
cator. Dawkins and Hull differ from each other with respect to selection of the
variants. For Dawkins, the organism exists for replication whereas, for Hull,
the selection is a function of the organism. Ritt (2004) proposed a phonolog-
ical change model which operates in the Dawkinsian framework. According
to Ritt, phonemes, morphemes, phonotactic patterns, and phonological rules
are replicators which are replicated through imitation. The process of imper-
fect imitation generates the variations in the linguistic behavior observed in a
speech community. In this model, the linguistic utterance exists for the sake of
replication rather than communication purposes.

Croft (2000, 2008) coins the term lingueme to denote a linguistic replica-
tor. A lingueme is a token of linguistic structure produced in an utterance. A
lingueme is a linguistic replicator and the interaction of the speakers (through
production and comprehension) with each other causes the generation and
propagation of variation. Selection of particular variants is motivated through
differential weighting of replicators in evolutionary biological models. The in-
tentional and non-intentional mechanisms such as pressure for mutual under-
standing and pressure to confirm to a standard variety cause imperfect replica-
tion in Croft’s model. The speaker himself selects the variants fit for produc-
tion whereas, Nettle (1999a) argues that functional pressure also operates in
the selection of variants.
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The iterative mounting differences induced through generations of imper-
fect replication cause linguistic diversity. Nettle (1999a: 10) lists three different
types of linguistic diversity:

• Language diversity. This is simply the number of languages present in
a given geographical area. New Guinea has the highest geographical di-
versity with more than 800 languages spoken in a small island whereas
Iceland has only one language (not counting the immigration in the re-
cent history).

• Phylogenetic diversity. This is the number of (sub)families found in
an area. For instance, India is rich in language diversity but has only
four language families whereas South America has 53 language families
(Campbell 2012: 67–69).

• Structural diversity. This is the number of languages found in an area
with respect to a particular linguistic parameter. A linguistic parameter
can be word order, size of phoneme inventory, morphological type, or
suffixing vs. prefixing.

A fourth measure of diversity or differences is based on phonology. Lohr
(1998: chapter 3) introduces phonological methods for the genetic classifica-
tion of European languages. The similarity between the phonetic inventories
of individual languages is taken as a measure of language relatedness. Lohr
(1998) also compares the same languages based on phonotactic similarity to
infer a phenetic tree for the languages. It has to be noted that Lohr’s compar-
ison is based on hand-picked phonotactic constraints rather than constraints
that are extracted automatically from corpora or dictionaries. Rama (2013) in-
troduces phonotactic diversity as an index of age of language group and family
size. Rama and Borin (2011) employ phonotactic similarity for the genetic
classification of 11 European languages.

Consider the Scandinavian languages Norwegian, Danish and Swedish. All
the three languages are mutually intelligible (to a certain degree) yet are called
different languages. How different are these languages or how distant are these
languages from each other? Can we measure the pair-wise distances between
these languages? In fact, Swedish dialects such as Pitemål and Älvdalska are
so different from Standard Swedish that they can be counted as different lan-
guages (Parkvall 2009).

In an introduction to the volume titled Approaches to measuring linguistic
differences, Borin (2013b: 4) observes that we need to fix the units of com-
parison before attempting to measure the differences between the units. In the
field of historical linguistics, language is the unit of comparison. In the closely
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related field of dialectology, dialectologists work with a much thinner samples
of a single language. Namely, they work with language varieties (dialects) spo-
ken in different sites in the geographical area where the language is spoken.5

For instance, a Swedish speaker from Gothenburg can definitely communicate
with a Swedish speaker of Stockholm. However, there are differences between
these varieties and a dialectologist works towards charting the dialectal con-
tours of a language.

At a higher level, the three Scandinavian languages are mutually intelligible
to a certain degree but are listed as different languages due to political reasons.
Consider the inverse case of Hindi, a language spoken in Northern India. The
language extends over a large geographical area but the languages spoken in
Eastern India (Eastern Hindi) are not mutually intelligible with the languages
spoken in Western India (Western Hindi). Nevertheless, these languages are
referred to as Hindi (Standard Hindi spoken by a small section of the Northern
Indian population) due to political reasons (Masica 1993).

2.2 Language change

Language changes in different aspects: phonology, morphology, syntax, mean-
ing, lexicon, and structure. Historical linguists gather evidence of language
change from all possible sources and then use the information to classify lan-
guages. Thus, it is very important to understand the different kinds of language
change for the successful computational modeling of language change. In this
section, the different processes of language change are described through ex-
amples from the Indo-European and Dravidian language families. Each de-
scription of a type of language change is followed by a description of the com-
putational modeling of the respective language change.

2.2.1 Sound change

Sound change is the most studied of all the language changes (Crowley and
Bowern 2009: 184). The typology of sound changes described in the following
subsections indicate that the sound changes depend on the notions of position
in the word, its neighboring sounds (context) and the quality of the sound in fo-
cus. The typology of the sound changes is followed by a subsection describing
the various string similarity algorithms which model different sound changes

5Doculect is the term that has become current and refers to a language variant described in
a document.
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and hence, employed in computing the distance between a pair of cognates, a
proto-form and its reflexes.

2.2.1.1 Lenition and fortition

Lenition is a sound change where a sound becomes less consonant like. Con-
sonants can undergo a shift from right to left on one of the scales given below
in Trask (1996: 56).
• geminate > simplex.
• stop > fricative > approximant
• stop > liquid.
• oral stop > glottal stop
• non-nasal > nasal
• voiceless > voiced
A few examples (from Trask 1996) involving the movement of sound ac-

cording to the above scales is as follows. Latin cuppa ‘cup’ > Spanish copa.
Rhotacism, /s/ > /r/, in Pre-Latin is an example of this change where *flosis >
floris genitive form of ‘flower’. Latin faba ‘bean’ > Italian fava is an example
of fricativization. Latin strata > Italian strada ‘road’ is an example of voicing.
The opposite of lenition is fortition where a sound moves from left to right on
each of the above scales. Fortition is not as common as lenition. For instance,
there are no examples showing the change of a glottal stop to an oral stop.

2.2.1.2 Sound loss

Apheresis. In this sound change, the initial sound in a word is lost. An example
of such change is in a South-Central Dravidian language, Pengo. The word in
Pengo rācu ‘snake’ < *trācu.
Apocope. A sound is lost in the word-final segment in this sound change. An
example is: French lit > /li/ ‘bed’.
Syncope. A sound is lost from the middle of a word. For instance, Old Indo-
Aryan pat.t.a ‘slab, tablet’ ~ Vedic Sanskrit pattra- ‘wing/feather’ (Masica 1993:
157).
Cluster reduction. In this change a complex consonant cluster is reduced to
a single consonant. For instance, the initial consonant clusters in English are
simplified through the loss of h; hring > ring, hnecca > neck (Bloomfield 1935:
370). Modern Telugu lost the initial consonant when the initial consonant clus-
ter was of the form Cr. Thus Cr > r : vrāyu > rāyu ‘write’ (Krishnamurti and
Emeneau 2001: 317).
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Haplology. When a sound or group of sounds recur in a word, then one of
the occurrence is dropped from the word. For instance, the Latin word nūtrix
which should have been nūtri-trix ‘nurse’, regular feminine agent-noun from
nūtriō ‘I nourish’ where tri is dropped in the final form. A similar example is
Latin stipi-pendium ‘wage-payment’ > stipendium (Bloomfield 1935: 391).

2.2.1.3 Sound addition

Excrescence. When a consonant is inserted between two consonants. For in-
stance, Cypriot Arabic developed a [k] as in *pjara > pkjara (Crowley and
Bowern 2009: 31).
Epenthesis. When a vowel is inserted into a middle of a word. Tamil inserts a
vowel in complex consonant cluster such as paranki < Franco ‘French man,
foreigner’ (Krishnamurti 2003: 478).
Prothesis. A vowel is inserted at the beginning of a word. Since Tamil phonol-
ogy does not permit liquids r, l to begin a word, it usually inserts a vowel of
similar quality of that of the vowel present in the successive syllable. Tamil
ulakam < Sanskrit lōkam ‘world’, aracan < rājan ‘king’ (Krishnamurti 2003:
476).

2.2.1.4 Metathesis

Two sounds swap their position in this change. Proto-Dravidian (PD) did not
allow apical consonants such as t., t

¯
, l, l., z. , r in the word-initial position. How-

ever, Telugu allows r, l in the word-initial position. This exception developed
due to the process of metathesis. For instance, PD *iran. t.u > ren. d. u ‘two’ where
the consonant [r] swapped its position with the preceding vowel [i] (Krish-
namurti 2003: 157). Latin miraculum > Spanish milagro ‘miracle’ where the
liquids r, l swapped their positions (Trask 2000: 211).

2.2.1.5 Fusion

In this change, two originally different sounds become a new sound where the
new sound carries some of the phonetic features from the two original sounds.
For instance, compensatory lengthening is a kind of fusion where after the loss
of a consonant, the vowel undergoes lengthening to compensate for the loss in
space (Crowley and Bowern 2009). Hindi āg < Prakrit aggi ‘fire’ is an example
of compensatory lengthening.
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2.2.1.6 Vowel breaking

A vowel can change into a diphthong and yields an extra glide which can be
before- (on-glide) or off-glide. An example from Dravidian is the Proto-South
Dravidian form *ot.ay > Toda war. ‘to break’; *o > wa before -ay.

2.2.1.7 Assimilation

In this sound change, a sound becomes more similar to the sound preceding or
after it. In some cases, a sound before exactly the same as the sound next to it –
complete assimilation; otherwise, it copies some of the phonetic features from
the next sound to develop into a intermediary sound – partial assimilation. The
Prakrit forms in Indo-Aryan show complete assimilation from their Sanskrit
forms: agni > aggi ‘fire’, hasta > hatta ‘hand’, and sarpa > sappa ‘snake’.6

Palatalization is a type of assimilation where a consonant preceding a front
vowel develops palatal feature, such as [k] > [c]. For example, Telugu shows
palatalization from PD: Telugu cēyi ‘hand’< *key < *kay (Krishnamurti 2003:
128).

2.2.1.8 Dissimilation

This sound change is opposite to that of assimilation. A classic case of dissimi-
lation is the Grassmann’s law in Sanskrit and Ancient Greek, which took place
independently. Grassmann’s law states that whenever two syllables immediate
to each other had a aspirated stop, the first syllable lost the aspiration. For ex-
ample, Ancient Greek thriks ‘hair’ (nominative), trikhos (genitive) as opposed
to thrikhos (Trask 2000: 142).

2.2.1.9 Some important sound changes

This subsection deals with some identified sound changes from the Indo-Europ-
ean and the Dravidian family. These sound changes are quite famous and were
originally postulated as laws, i.e. exceptionless patterns of development. How-
ever, there were exceptions to these sound laws which made them recurrent
but not exceptionless. The apical displacement is an example of such sound
change in a subset of South-Central Dravidian languages which is on-going
and did not affect many of the lexical items suitable for sound change (Krish-
namurti 1978).

6This example is given by B. Lakshmi Bai.
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One of the first discovered sound changes in the IE family is Grimm’s law.
Grimm’s law deals with the sound change which occurred in all languages of
Germanic branch. The law states that in the first step, the unvoiced plosives
became fricatives. In the second step, the voiced aspirated plosives in PIE lost
their aspiration to become unaspirated voiced plosives. In the third and final
step, the voiced plosives became unvoiced plosives (Collinge 1985: 63). Cog-
nate forms from Sanskrit and Gothic illustrate how Grimm’s law applies to
Gothic, while the Sanskrit forms retain the original state of affairs:

• C {-Voicing, -Aspiration} ~ C {+Continuant}: traya- ~ θreis ‘three’

• C {+Voicing, +Aspiration} ~ C {+Voicing, -Aspiration}: madhya- ~ mid-
jis ‘middle’

• C {+Voicing, -Aspiration} ~ C {-Voicing, -Aspiration}: daśa- ~ taihun
‘ten’

However, there were exceptions to this law: whenever the voiceless plosive
did not occur in the word-initial position or did not have an accent in the pre-
vious syllable, the voiceless plosive became voiced. This is known as Verner’s
law. Some examples of this law are: Sanskrit pitár ~ Old English faedar ‘fa-
ther’, Sanskrit (va)vrtimá ~ Old English wurdon ‘to turn’.

The next important sound change in IE linguistics is the Grassmann’s law.
As mentioned above, Grassmann’s law (GL) states that whenever two sylla-
bles (within the same root or when reduplicated) are adjacent to each other,
with aspirated stops, the first syllable’s aspirated stop loses the aspiration. Ac-
cording to Collinge (1985: 47), GL is the most debated of all the sound changes
in IE. Grassmann’s original law has a second proposition regarding the Indic
languages where a root with a second aspirated syllable can shift the aspira-
tion to the preceding root (also known as aspiration throwback) when followed
by a aspirated syllable. Grassmann’s first proposition is mentioned as a law
whereas, the second proposition is usually omitted from historical linguistics
textbooks.

Bartholomae’s law (BL) is a sound change which affected Proto-Indo-Irani-
an roots. This law states that whenever a voiced, aspirated consonant is fol-
lowed by a voiceless consonant, there is an assimilation of the following voice-
less consonant and deaspiration in the first consonant. For instance, in Sanskrit,
labh+ta > labdha ‘sieze’, dah+ta > dagdha ‘burnt’, budh+ta > buddha ‘awak-
ened’ (Trask 2000: 38).

Together, BL and GL received much attention due to their order of ap-
plication in the Indic languages. One example is the historical derivation of
dughdas in Sanskrit. The first solution is to posit *dhugh+thas BL→ *dhughdhas
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GL→ *dughdhas
deaspiration→ dugdhas. Reversing the order of BL and GL yields the

same output. Collinge (1985: 49–52) summarizes recent efforts to explain all
the roots in Indic branch using a particular rule application order of BL and
GL. The main take-away from the GL debate is that the reduplication exam-
ples show the clearest deaspiration in first syllable. For instance, dh – dh > d –
dh in Sanskrit da-dhā-ti ‘to set’, reduplicated present. A loss of second syllable
aspiration immediately before /s/, /t/ (Beekes 1995: 128). An example of this
sound change from Sanskrit is: dáh-a-ti ‘burn’ < PIE *dhagh-, but 3 sg. s-aor.
á-dhāk < *-dhāk-s-t.

An example of the application of BL and GL is: buddha can be explained as
PIE *bhewdh (e-grade) GL→ Sanskrit budh (Ø-grade); budh+ta BL→ buddha ‘awak-
ened’ (Ringe 2006: 20).

Another well-known sound change in Indo-European family is umlaut (met-
aphony). In this change, a vowel transfers some of its phonetic features to its
preceding syllable’s vowel. This sound change explains singular : plural forms
in Modern English such as foot : feet, mouse : mice. Trask (2000: 352–353)
lists three umlauts in the Germanic branch:

• i-umlaut fronts the preceding syllable’s vowel when present in a plural
suffix in Old English -iz.

• a-umlaut lowers the vowels [i] > [e], [u] > [o].

• u-umlaut rounds the vowels [i] > [y], [e] > [ø], [a] > [æ].

Kannada, a Dravidian language, shows an umlaut where the mid vowels be-
came high vowels in the eighth century: [e] > [i] and [o] > [u], when the next
syllable has [i] or [u]; Proto-South Dravidian *ket.u > Kannada kid. u ‘to perish’
(Krishnamurti 2003: 106).

2.2.1.10 Computational modeling of sound change

Biologists compare sequential data to infer family trees for species (Gusfield
1997; Durbin et al. 2002). As noted before, linguists primarily work with word
lists to establish the similarities and differences between languages to infer the
family tree for a set of related languages. Identification of synchronic word
forms descended from a proto-language plays an important role in compara-
tive linguistics. This is known as the task of “Automatic cognate identification”
in LT literature. In LT, the notion of cognates is useful in building LT systems
such as sentence aligners that are used for the automatic alignment of sen-
tences in the comparable corpora of two closely related languages. One such
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attempt is by Simard, Foster and Isabelle (1993) employ similar words7 as
pivots to automatically align sentences from comparable corpora of English
and French. Covington (1996), in LT, was the first to develop algorithms for
cognate identification in the sense of historical linguistics.8 Covington (1996)
employs phonetic features for measuring the change between cognates. The
rest of the section introduces Levenshtein distance (Levenshtein 1966) and the
other orthographic measures for quantifying the similarity between words. I
will also make an attempt at explaining the linguistic motivation for using these
measures and their limitations.

Levenshtein (1966) computes the distance between two strings as the min-
imum number of insertions, deletions and substitutions to transform a source
string to a target string. The algorithm is extended to handle methathesis by
introducing an operation known as “transposition” (Damerau 1964). The Lev-
enshtein distance assigns a distance of 0 to identical symbols and assigns 1 to
non-identical symbol pairs. For instance, the distance between /p/ and /b/ is
the same as the distance between /f/ and /æ/. A linguistic comparison would
suggest that the difference between the first pair is in terms of voicing whereas
the difference between the second pair is greater than the first pair. Levenshtein
distance (LD) also ignores the positional information of the pair of symbols.
The left and right context of the symbols under comparison are ignored in LD.
Researchers have made efforts to overcome the shortcomings of LD in direct
as well as indirect ways. Kessler (2005) gives a summary of various phonetic
algorithms developed for the historical comparison of word forms.

In general, the efforts to make LD (in its plainest form is henceforth referred
as “vanilla LD”) sensitive to phonetic distances is achieved by introducing an
extra dimension to the symbol comparison. The sensitization is achieved in
two steps:

1. Represent each symbol as a vector of phonetic features.

2. Compare the vectors of phonetic features belonging to the dissimilar
symbols using Manhattan distance, Hamming distance or Euclidean dis-
tance.

A feature in a feature vector can be represented as a 1/0 bit or a value on a con-
tinuous (Kondrak 2002a) or ordinal (Grimes and Agard 1959) scale. An ordinal
scale implies an implicit hierarchy in the phonetic features – place of articula-
tion and manner of articulation. Heeringa (2004) uses a binary feature-valued

7Which they refer to as “cognates”, even though borrowings and chance similarities are
included.

8Grimes and Agard (1959) use a phonetic comparison technique for estimating linguistic
divergence in Romance languages.
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system to compare Dutch dialects. Rama and Singh (2009) use the phonetic
features of the Devanagari alphabet to measure the language distances between
ten Indian languages.

The sensitivity of LD can also be improved based on the symbol distances
derived from empirical data. In this effort, originally introduced in dialectology
(Wieling, Prokić and Nerbonne 2009), the observed frequencies of a symbol-
pair is used to assign an importance value. For example, a sound correspon-
dence such as /s/ ~ /h/ or /k/ ~ /c/ is observed frequently across the world’s lan-
guages (Brown, Holman and Wichmann 2013). However, historical linguists
prefer natural yet, less common-place sound changes to establish subgroups.
An example of natural sound change is Grimm’s law described in previous sub-
section. In this law, each sound shift is characterized by the loss of a phonetic
feature. An example of unnatural and explainable chain of sound changes is the
Armenian erku (cf. section 2.3.1.1). A suitable information-theoretic measure
such as Point-wise Mutual Information (PMI) – which discounts the common-
ality of a sound change – is used to compute the importance for a particular
symbol-pair (Jäger 2014).

List (2012) applies a randomized test to weigh the symbol pairs based on
the relative observed frequencies. His method is successful in identifying cases
of regular sound correspondences in English ~ German where German shows
changed word forms from the original Proto-Germanic forms due to the High
German consonant shift. We are aware of only one effort (Rama, Kolachina
and Kolachina 2013) which incorporates both frequency and context into LD
for cognate identification. Their system recognizes systematic sound corre-
spondences between Swedish and English such as /sk/ in sko ‘shoe’ ~ /S/.

An indirect sensitization is to change the input word representation format
to vanilla LD. Dolgopolsky (1986) designed a sound class system based on
the empirical data from 140 Eurasian languages. Brown et al. (2008) devised a
sound-class system consisting of 32 symbols and few post-modifiers to com-
bine the previous symbols and applied vanilla LD to various tasks in historical
linguistics. One limitation of LD can be exemplified through the Grassmann’s
Law example. Grassmann’s law is a case of distant dissimilation which cannot
be retrieved by LD.

There are string similarity measures which work at least as well as LD.
A few such measures are Dice, Longest common subsequence ratio (Tiede-
mann 1999), and Jaccard’s measure. Dice and Jaccard’s index are related mea-
sures which can handle a long-range assimilation/dissimilation. Dice counts
the common number of bigrams between the two words. Hence, bigrams are
the units of comparison in Dice. Since bigrams count successive symbols, bi-
grams can be replaced with more generalized skip-grams which count n-grams
of any length and any number of skips. In some experiments whose results are
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not presented here, skip-grams perform better than bigrams in the task of cog-
nate identification.

The Needleman-Wunsch algorithm (Needleman and Wunsch 1970) is the
similarity counterpart of Levenshtein distance. Eger (2013) proposes context
and PMI-based extensions to the original Needleman-Wunsch algorithm for
the purpose of letter-to-phoneme conversion for English, French, German, and
Spanish.

2.2.2 Semantic change

Semantic change characterizes the change in the meaning of a linguistic form.
Although textbooks (Campbell 2004; Crowley and Bowern 2009; Hock and
Joseph 2009) usually classify semantic change under the change of meaning of
a lexical item, Fortson (2003) observes that semantic change also includes lex-
ical change and grammaticalization. Trask (2000: 300) characterizes semantic
change as one of the most difficult changes to identify. Lexical change in-
cludes introduction of new lexical items into language through the processes
of borrowing (copying), internal lexical innovation, and shortening of words
(Crowley and Bowern 2009: 205–209). Grammaticalization is defined as the
assignment of a grammatical function to a previously lexical item. Grammat-
icalization is usually dealt under the section of syntactic change. Similarly,
structural change such as basic word order change, morphological type or erga-
tivity vs. accusativity is also included under syntactic change (Crowley and
Bowern 2009; Hock and Joseph 2009).

2.2.2.1 Typology of semantic change

The examples in this section come from Luján 2010 and Fortson 2003 except
for the Dravidian example which is from Krishnamurti 2003: 128.

1. Broadening and narrowing. A lexical item’s meaning can undergo a shift
to encompass a much wider range of meaning in this change. Originally,
dog meant a particular breed of dog and hound meant a generic dog. The
word dog underwent a semantic change to mean not a particular breed
of dog but any dog. Inversely, the original meaning of hound changed
from ‘dog’ to ‘hunting dog’. The original meaning of meat is ‘food’ in
the older forms of English. This word’s meaning has now changed to
mean only ‘meat’ and still survives in expressions such as sweetmeat
and One man’s meat is another man’s poison. Tamil kili ‘bird’ ~ Telugu
chili- ‘parrot’ is another example of narrowing.
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2. Melioration and pejoration. In pejoration, a word with non-negative
meaning acquires a negative meaning. For instance, Old High German
diorna/thiorna ‘young girl’ > Modern High German dirne ‘prostitute’.
Melioration is the opposite of pejoration where a word acquires a more
positive meaning than its original meaning. For instance, the original
English word nice ‘simple, ignorant’ > ‘friendly, approachable’.

3. Metaphoric extension. In this change, a lexical item’s meaning is ex-
tended through the employment of a metaphor such as body parts: head
‘head of a mountain’, tail ‘tail of a coat’; heavenly objects: star ‘rock-
star’; resemblance to objects: mouse ‘computer mouse’.

4. Metonymic extension. The original meaning of a word is extended throu-
gh a relation to the original meaning. The new meaning is somehow
related to the older meaning such as Latin sexta ‘sixth (hour)’ > Spanish
siesta ‘nap’, Sanskrit ratha ‘chariot’ ~ Latin rota ‘wheel’.

2.2.2.2 Lexical change

Languages acquire new words through the mechanism of borrowing and neol-
ogisms. Borrowing is broadly categorized into lexical borrowing (loanwords)
and loan translations. Lexical borrowing usually involves introduction of a new
word from the donor language to the recipient language. Examples of such
borrowings are the word beef ‘cow’ from Norman French. Although English
had a native word for cow, the meat was referred to as beef and was sub-
sequently internalized into the English language. English borrowed a large
number of words through cultural borrowing. Examples of such words are
chocolate, coffee, juice, pepper, and rice. The loanwords are often modified
to suit the phonology and morphology of the recipient language. For instance,
Dravidian languages tend to deaspirate the aspirate sounds in the loanwords
borrowed from Sanskrit: Tamil mētai < Sanskrit mēdhā ‘wisdom’ and Telugu
kata < Sanskrit katha ‘story’.

Meanings can also be borrowed into a language and such cases are called
calques. For instance, Telugu borrowed the concept of black market and trans-
lated it as nalla bajāru. Neologisms is the process of creating new words to
represent hitherto unknown concepts – blurb, chortle; from person names –
volt, ohm, vandalize (from Vandals); place names – Swedish persika ‘peach’ <
Persia; from compounding – braindead; from derivation – boombox; amalga-
mation – altogether, always, however; from clipping – gym < gymnasium, bike
< bicycle, and nuke < nuclear.
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2.2.2.3 Grammatical change

Grammatical change is a cover term for morphological change and syntactic
change taken together. Morphological change is defined as change in the mor-
phological form or structure of a word, a word form or set of such word forms
(Trask 2000: 139–40, 218). A sub-type of morphological change is remor-
phologization where a morpheme changes its function from one to another. A
sound change might effect the morphological boundaries in a word causing the
morphemes to be reanalysed as different morphemes from before. An exam-
ple of such change is English umlaut which caused irregular singular : plural
forms such as foot : feet, mouse : mice. The reanalysis of the morphemes can be
extended to words as well as morphological paradigms resulting in a restruc-
turing of the morphological system of the language. The changes of extension
and leveling are traditionally treated under analogical change (Crowley and
Bowern 2009: 189–194).

Syntactic change is the change of syntactic structure such as the word or-
der (markedness shift in word-order), morphological complexity (from inflec-
tion to isolating languages), verb chains (loss of free verb status to pre- or
post-verbal modifiers), and grammaticalization. It seems quite difficult to draw
a line between where a morphological change ends and a syntactic change
starts.9 Syntactic change also falls within the investigative area of linguistic ty-
pology. Typological universals act as an evaluative tool in comparative linguis-
tics (Hock 2010: 59). Syntactic change spreads through diffusion/borrowing
and analogy. Only one syntactic law has been discovered in Indo-European
studies called Wackernagel’s law, which states that enclitics originally occu-
pied the second position in a sentence (Collinge 1985: 217).

2.2.2.4 Computational modeling of semantic change

The examples given in the previous section are about semantic change from
an earlier form of the language to its current form. The Dravidian example
of change from Proto-Dravidian *kil-i ‘bird’ > Telugu ‘parrot’ is an example
of a semantic shift which occurred in a daughter language (Telugu) from the
Proto-Dravidian’s original meaning of ‘bird’.

The work of Kondrak 2001, 2004, 2009 attempts to quantify the amount of
semantic change in four Algonquian languages. Kondrak used Hewson’s Al-
gonquian etymological dictionary (Hewson 1993) to compute the phonetic as
well as semantic similarity between the cognates of the four languages. As-

9Fox (1995: 111) notes that “there is so little in semantic change which bears any relation-
ship to regularity in phonological change”.
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suming that the languages under study have their own comparative dictionary,
Kondrak’s method works at three levels:

• Gloss identity. Whenever two word forms in the dictionary have identi-
cal meanings, the word forms get a semantic similarity score of 1.0.

• Keyword identity. In this step, glosses are POS-tagged with an existing
POS-tagger and only the nouns (NN tagged) are supposed to carry mean-
ing. This step restricts the comparison of grammatically over-loaded
forms and the identification of grammaticalization.

• WordNet similarity. In this step, the keywords identified through the
previous step are compared through the WordNet structure (Fellbaum
1998). The sense distance is computed using a semantic similarity mea-
sure such as Wu-Palmer’s measure, Lin’s similarity, Resnik Similarity,
Jiang-Conrath distance, and Leacock-Chodorow similarity (Jurafsky and
Martin 2000: chapter 20.6).

The above procedure of computing semantic distance is combined with a pho-
netic similarity measure called ALINE (Kondrak 2000). The combination of
phonetic and semantic similarities is shown to perform better than the individ-
ual similarity measures. There were few other works to compute semantic dis-
tance between languages based on bilingual dictionaries (Cooper 2008; Eger
and Sejane 2010).

The major deficiency in Kondrak’s work is the restriction on the mobility
of meaning across syntactic categories and the restriction to nouns. In con-
trast, comparative linguists also work with comparing and reconstructing of
bound morphemes and their functions. Moreover, grammaticalization is not
recognized in this framework. Finally, Kondrak’s algorithms require compara-
tive dictionaries as an input, which require a great deal of human effort. This
seems to be remedied to a certain extent in the work of Tahmasebi (2013) and
Tahmasebi and Risse (under submission).

Unlike Kondrak, Tahmasebi works on the diachronic texts of a single lan-
guage. Tahmasebi’s work attempts at identifying the contents and interpreting
the context in which the contents occur. This work identifies two important
semantic changes, namely word sense change and named entity change. Au-
tomatic identification of toponym change is a named entity related task. An
example of named entity change is the reversal of city and town names, in
Russia after the fall of Soviet Union, to their early or pre-revolutionary era
names such as Leningrad > St. Petersburg (also Petrograd briefly); Stalingrad
(earlier Tsaritsyn) > Volgograd.
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2.3 How do historical linguists classify languages?

Historical linguists classify languages through comparison of related languages
based on diagnostic evidence. The most important tool in the toolkit of his-
torical linguists is the comparative method. The comparative method works
through the comparison of vocabulary items and grammatical forms to iden-
tify the systematic sound correspondences (cf. sections 2.2.1 and 2.2.2 for a
summary of sound change and semantic change) between the languages and
then project those sound correspondences to intermediary ancestral languages
and further back, to a proto-language. The comparative method also recon-
structs the phonemes (phonological system), morphemes (morphological sys-
tem), syntax, and meanings in the intermediary ancestral languages – such as
Proto-Germanic. These intermediary languages are then used to reconstruct
the single ancestral language such as Proto-Indo-European. The comparative
method also identifies the shared innovations (sound changes which are shared
among a subset of related languages under study) to assign a internal structure
(a branching structure) to the set of related languages. This task comes under
the label of subgrouping. Overall, the application of the comparative method
results in the identification of relations between languages and an assignment
of tree structure to the related languages. However, the comparative method is
not without problems. The comparative method works by following the traces
left by the processes of language change. Unlike biology the traces of the ear-
lier language changes might be covered or obliterated by temporally recent
changes. Thus the comparative method will not be able to recover the origi-
nal forms whenever the change did not leave a trace in the language. This is
known as the time limit of the comparative method (Harrison 2003) where the
comparative method does not work for recovering temporally deep – greater
than 8000 years (Nichols 1992) – language change.

The rest of the section describes the ingredients which go into the compar-
ative method, models of language change, examples of how few families were
established through the comparative method, and the mechanized parts of the
comparative method.

2.3.1 Ingredients in language classification

The history of the idea of language relationships, from the sixteenth and sev-
enteenth centuries is summarized by Metcalf (1974: 251) (from Hoenigswald
1990: 119) as follows:

First, [. . . ] there was “the concept of a no longer spoken parent language
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which in turn produced the major linguistic groups of Asia and Europe.”
Then there was [. . . ] “a concept of the development of languages into
dialects and of dialects into new independent languages.” Third came
“certain minimum standards for determining what words are borrowed
and what words are ancestral in a language,” and, fourth, “an insistence
that not a few random items, but a large number of words from the basic
vocabulary should form the basis of comparison” [. . . ] fifth, the doctrine
that “grammar” is even more important than words; sixth, the idea that
for an etymology to be valid the differences in sound – or in “letters” –
must recur, under a principle sometimes referred to as “analogia”.

The above quote stresses the importance of selection of basic vocabulary
items for language comparison and superiority of grammatical evidence over
sound correspondences for establishing language relationships. The next sub-
section describes the selection process of vocabulary items and examples of
grammatical correspondences for positing language relationships.

2.3.1.1 Three kinds of evidence

Meillet (1967: 36) lists three sources of evidence for positing language re-
lationships: sound correspondences obtained from phonology, morphological
correspondences, and similarities in basic vocabulary. Basic lexical compari-
son precedes phonological and morphological evidence during the process of
proposal and consolidation of language relationships.

Campbell and Poser (2008: 166) insist on the employment of basic vocab-
ulary for lexical comparison. Curiously, the notion of basic vocabulary was
not established on empirical grounds. Basic vocabulary is usually understood
to consist of terms for common body parts, close kin, astronomical objects,
numerals from one to ten, and geographical objects. The strong assumption
behind the choice of basic vocabulary is that these vocabulary items are very
resistant to borrowing, lexical replacement, and diffusion and hence, show the
evidence of a descent from a common ancestor. However, basic vocabulary
can also be borrowed. For instance, Telugu borrowed lexical items for ‘sun’,
‘moon’, and ‘star’ – sūrya, candra, and nakshatra – from Indo-Aryan lan-
guages, and the original Dravidian lexemes – end. a, nela, and cukka – became
less frequent or were relegated to specific contexts. Brahui, a Dravidian lan-
guage surrounded by Indo-Aryan languages, also borrowed quite a large num-
ber of basic vocabulary items.

The second evidence for language relationship comes from sound corre-
spondences. Sound correspondences should be recurrent and not sporadic. The
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sound correspondences should recur in a specific linguistic environment and
not be one-time changes. There should be a regularity when reconstructing the
order of sound change which occurred in a daughter language from its ancestral
language. For instance, Armenian erku ‘two’ is shown to be descended from
PIE *dw-: *dw- > *tg- > *tk- > *rk- > erk- (Hock and Joseph 2009: 583–584).
Usually, cognates are phonetically similar and the sound change which caused
the reflex is not a series of sound shifts.

The third evidence for language relationship comes from morphology. A
comparison of the copula “to be” across different IE branches is shown in
table 2.2. The table shows how the morphological ending for 3rd pers. sg. *-ti
and 1st pers. sg. *-mi shows similarities across the languages.

Lang. 3rd pers. sg. 3rd pers. pl. 1st pers. sg.

Latin est sunt sum
Sanskrit ásti sánti asmi
Greek esti eisi eimi
Gothic ist sind am
Hittite ešzi ašanzi ešmi

PIE *es-ti *s-enti (Ø-grade) *es-mi

Table 2.2: A comparison of copula across different IE branches (from Campbell and
Poser 2008: 181).

It would be worth noting that the morphological analysis reported in ta-
ble 2.2 is done manually by reading the texts of these dead languages. In LT,
reliable morphological analyzers exist only for a handful of languages and any
attempts at an automatic and unsupervised analysis for the rest of the world’s
languages has a long way to go (Hammarström and Borin 2011).

2.3.1.2 Which evidence is better?

Morphological evidence is the strongest of all the three kinds of evidence to
support any proposal for genetic relationships (Poser and Campbell 1992). For
instance, Sapir proposed that Yurok and Wiyot, two Californian languages, are
related to the Algonquian language family based on grammatical evidence.
This claim was considered controversial at the time of the proposal but was
later supported through the work of Haas 1958. In the same vein, IE languages
such as Armenian, Hittite, and Venetic were shown to be affiliated to IE based
on morphological evidence. Armenian is a special case where the language
was recognized as IE and related to Iranian based on lexical comparison. Later
comparison showed that Armenian borrowed heavily from Iranian yielding the
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earlier conclusion that Armenian is a language within Iranian subfamily. Later
grammatical comparison, however, showed that Armenian is a distinct sub-
group within the IE family. When working with all three kinds of evidence
the linguist seeks to eliminate borrowings and other spurious similarities when
consolidating new genetic proposals. In a computational study involving the
ancient languages of the IE family, Nakhleh et al. (2005) perform experiments
on differential weighting of phonological, morphological, and lexical charac-
ters to infer the IE family tree. They find that weighting improves the match
of the inferred tree with the known IE tree. Kolachina, Rama and Bai (2011)
apply the maximum parsimony method to hand-picked features in the Dravid-
ian family to weigh the binary vs. ternary splitting hypotheses at the top-most
node.

2.3.2 The comparative method and reconstruction

The previous subsection introduced the three sources for accumulating ev-
idence for consolidating the genetic relation proposals between languages.
This section summarizes the working of comparative method and the proce-
dure for reconstructing the proto-language as well as the intermediary proto-
languages. The comparative method has been described in various articles by
Hoenigswald (1963, 1973, 1990, 1991), Durie and Ross (1996), and Rankin
(2003). The flowchart in figure 2.1 presents an algorithmic representation of
the steps involved in the comparative method. The rest of the section summa-
rizes the various steps and the models of language change with illustrations.

Comparison of basic vocabulary constitutes the first step in the comparative
method. In this step the basic word forms are compared to yield a list of sound
correspondence sets. The sound correspondences should be recurring and not
an isolated pair such as Greek /th/ ~ Latin /d/ in theos ~ deus (Fox 1995: 66) –
we know that Greek /th/ should correspond to Latin /f / in word-initial position.
These sound correspondences are then used to search for plausible cognates
across the languages. Meillet requires that a plausible cognate should occur
in at least three languages to label the cognate set as plausible. In the next
step, a possible proto-phoneme for a sound correspondences set is posited. For
instance, if a sound correspondence set is of the form p/p/p, in the Latin, Greek,
and Sanskrit words for ‘father’, then the proto-phoneme is posited as *p. In
the next step, a phonetic value is assigned to the proto-phoneme. The case of
p/p/p is a relatively easy one whereas the case of Latin formus, Greek thermos,
and Sanskrit gharmas ‘warm’ is a recurring sound correspondence of f /th/gh.
In this case, a consensual phonetic value is assigned to the proto-phoneme.
The actual reconstructed proto-phoneme is *gwh. This reconstruction comes
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Figure 2.1: Flowchart of the reconstruction procedure (Anttila 1989: 347). CM and
IR stand for the comparative method and internal reconstruction.
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at a later stage when the proto-phonemes of natural type are established. For
instance, even when Armenian erk- regularly corresponds to Sanskrit dw- in
word-initial position, the explanation for such regularity is left for the later
stage. Anttila (1989) calls such regular yet non-gradual similarity an evidence
for distant relationship. It has to be noted that the assigned phonetic value
of a proto-phoneme should not be of any arbitrary value but something that
explains the gradual phonetic shift and the change from a proto-phoneme to
reflexes should be explainable in the least number of most natural changes,
also referred to as Occam’s Razor.

As noted earlier, regular morphological correspondence provides the strong-
est evidence for genetic relationship. In fact, Meillet (translated by Poser and
Campbell 1992) holds that regular sound correspondences are not the absolute
proof of relatedness and goes on to stress that irregular grammatical forms are
the best evidence for establishing a common language. According to Anttila
(1989), what passes as morphological reconstruction is mostly phonological
in nature (morphophonemic analysis). Morphophonemic reconstruction makes
up the reconstruction of grammatical forms and their grammatical function.

The reconstruction of the lexicon or the meaning of the reconstructed proto-
forms is not parallel to that of phonological reconstruction. According to Fox
(1995: 111–118), the lexicon reconstruction procedure does not have the par-
allel step of positing a proto-meaning. The next step after the comparison of
daughter languages’ meanings is the reconstruction of the proto-meanings. A
example of such reconstruction are the assignment of meaning to the IE proto-
form *pont. Greek has two meanings ‘sea’ and ‘path’; Latin and Armenian
have meanings ‘ford’ and ‘bridge’; Sanskrit and Old Church Slavonic have the
meanings of ‘road’ or ‘path’. Vedic has the meaning of ‘passage’ through air as
well. A reconciliation of these different meanings would indicate that the orig-
inal form had the meaning of ‘passage’ which was extended to ‘sea’ in Greek,
a narrowing of travel over water or land in Latin and Armenian. So, the origi-
nal meaning of *pont is reconstructed as a general word for travel. In English,
little and small are different (roughly synonymous) lexical items, whereas in
Swedish the cognate forms liten and små are inflectional forms of the same
lexical item (liten, litet, lilla, lille are singular forms and små is plural).10 To
conclude, the lexicon reconstruction is done on a per-word basis and is not as
straightforward as phonological reconstruction.

Typological universals serve as a sanity check against the reconstructed lan-
guages’ linguistic systems. For instance, positing an unbalanced vowel or con-
sonant system would be untenable under known typological universals. Hock
(2010: 60) summarizes the ‘glottalic’ theory in Indo-European languages as

10This example is given by Lars Borin.
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an example of typological check against the reconstructed consonant system.
The PIE consonant inventory which was once the most widely accepted had
a voiceless, voiced, and voiced aspirate consonants. This system was asserted
as typologically impossible since any language with voiced aspirates should
also have voiceless aspirates. A glottalized consonant series in addition to the
voiceless aspirates was proposed as the alternate reconstruction that satisfies
the conditions imposed by typology. Working from PIE to the daughter lan-
guages, the expanded consonant system would reject Grimm’s law and sug-
gests that the Germanic and Armenian consonant systems preserve the original
PIE state and all the other IE languages have undergone massive shifts from
PIE. The glottalic system has been discredited after the discovery of Indone-
sian languages which have voiced aspirates without their voiceless counter-
parts. Moreover the glottalic system is against the general principle of Occam’s
Razor (Hock and Joseph 2009: 443–445).

The regular sound correspondences established through the comparative
method also help in recognizing borrowings. For instance, English has two
forms with meanings related to ‘brother’ brotherly and fraternal. The regular
sound correspondence of PIE *bh > b suggests that the f in fraternal is not a
native word but was borrowed from Latin.

In this step, the enumeration of shared innovations and shared retentions
form the next stage for positing a family tree. Shared innovations are regular
and natural sound changes shared by a subset of languages. The shared inno-
vations in a subset of languages suggest that these languages have descended
from a intermediary common ancestor which has undergone this particular lin-
guistic change and all the daughter languages of the ancestor show this change.
Grimm’s law is such a sound change which groups all the Germanic languages
under a single node. Meillet (1967: 36) employs a different term shared aber-
rancies (also called shared idiosyncrasies by Hock and Joseph 2009: 437) such
as the recurrent suppletive form correspondence between English and German
for a strong evidence of the genetic relationship.

Despite the copious research in IE linguistics, the tree structure for IE at
higher levels is not very well resolved (cf. figure 2.2). A basic assumption of
the comparative method is that the proto-language is uniform and without di-
alectal variation. However, there are unexplainable reflexes which cannot be
accounted for from known evidence. In such a case, a practitioner of the com-
parative method has to admit it as dialectal variation. An example of the admit-
tance of dialectal variation in proto-language is the correspondence of voice-
less aspirates in Indo-Iranian to other IE branches: Sanskrit ratha- ~ Latin rota
‘chariot, wheel’. Finally, the comparative method assumes that sound change
operates without exceptions or it affects all the suitable lexical items. However,
Krishnamurti (1978) demonstrated a sound change such as apical displacement
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Figure 2.2: Higher-order tree of IE family from Garrett (1999).

which is still in progress (lexical diffusion; Chen and Wang 1975) in few lan-
guages of the South-Central Dravidian family but has proceeded to completion
in Gondi. Based on a single innovation which is still in progress, Krishnamurti,
Moses and Danforth (1983) infer the family tree for the South-Central Dravid-
ian family using the unaffected cognates as a criterion for subgrouping. In an-
other study, based on the same dataset of South-Central Dravidian languages,
Rama, Kolachina and Bai (2009) apply different phylogenetic techniques listed
in section 2.4.2 and find that the different phylogenetic methods agree with the
classification given by the comparative method.

2.3.2.1 Tree model

A tree model only represents the genetic affiliations inside a language family
and does not represent the dialectal borrowings and borrowings from neigh-
boring related languages. Also, a parallel (independent) development such as
Grassmann’s law in Greek and Sanskrit cannot be shown in the tree model.
Moreover, the tree resulting from the application of the comparative method is
not metrical11 and does not explicitly show information about the date of splits
(Hoenigswald 1987). The date of splits can be worked out through epigraphic
evidence, relative chronology of the sound changes, and archaeological evi-
dence. As Bloomfield (1935: 311) points out:

The earlier students of Indo-European did not realize that the family-
tree diagram was merely a statement of their method; they accepted the
uniform parent languages and their sudden and clear-cut splitting, as
historical realities.

11A metrical tree shows branch lengths.
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The above statement suggests that the tree is only a model or device to repre-
sent the inherited linguistic characteristics from a common ancestor. Moreover,
the comparative method attempts to establish a successive split model of a lan-
guage family. Thus, a resolved family tree need not show binary splits at all
the nodes – the Dravidian family tree shows a ternary split at the root (Krish-
namurti 2003: 493). A mathematical treatment of the enumeration of possible
rooted binary vs. non-binary trees is given by Felsenstein (2004: 19–36). The
number of possible rooted, non-binary, and unlabeled trees for a given family
size is presented in table 2.3.

Family size Tree shapes

2 1
5 12
10 2312
20 256738751
40 9.573×1018

80 3.871×1040

100 2.970×1051

Table 2.3: Number of non-binary tree topologies.

2.3.2.2 Wave model

The observation that there were similarities across the different branches of the
IE family led to the wave model, proposed by Schmidt (1872). The IE wave
model is given in figure 2.3. For instance, the Balto-Slavic, Indo-Iranian, and
Armenian subfamilies share the innovation from original velars to palatals. In
this model, an innovation starts out in a speech community and diffuses out
to neighboring speech communities. An example of an isogloss map for South
Dravidian languages is given in figure 2.4. The wave model is not an alternative
to the tree model but captures the points not shown by the tree model. The wave
model captures the overlapping innovations across the subfamilies and also
shows the non-homogeneity of the proto-language. Representing the proto-
language at one end and dialects of a daughter language at the other end on a
graded scale, the tree model can be re-conciliated with the wave model. The
tree-envelope representation of Southworth 1964 is one such example which
attempts at showing the subgrouping as well as the shared innovations between
the subgroups. The study of lexical diffusion of s > h > Ø in Gondi dialects
by Krishnamurti (1998) is an example where the original Proto-Dravidian *c
> *s in the word-initial, pre-vocalic position completed the sound change in
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South Dravidian languages. This sound change is succeeded by *s > *h > Ø
and is completed in South Dravidian I and Telugu. The same sound change is
still ongoing in some Gondi dialects and the completion of the sound change
marks the dialectal boundary in Gondi.

  

Figure 2.3: Indo-European isoglosses (Bloomfield 1935: 316) and the correspond-
ing tree-envelope representation from Southworth (1964). The numbers
in isogloss figure correspond to the following features. 1. Sibilants for
velars in certain forms. 2. Case-endings with [m] for [bh]. 3. Passive-
voice endings with [r]. 4. Prefix [e-] in past tenses. 5. Feminine nouns
with masculine suffixes. 6. Perfect tense used as general past tense.

2.3.2.3 Mesh principle

The mesh principle is developed by Swadesh (1959) for identifying the sus-
pected relations between far-related languages. Swadesh begins by observing
that the non-obvious relationship between Tlingit and Athapaskan becomes
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Figure 2.4: Shared innovations in South Dravidian I represented as isoglosses (Kr-
ishnamurti 2003: 498).

obvious by including Eyak into the comparative study. In parallel to the situa-
tion of a dialectal continuum, there is also a lingual chain where the links in the
chain are defined through systematic grammatical and sound correspondences.
Swadesh (1959: 9) notes that:

However, once we have established extensive networks of related lan-
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guages connected with each other in a definite order of relative affinities,
expressible, for example, in a two-dimensional diagram, it is possible to
test each new language, as yet unplaced, at scattered points in the con-
stellation to find where it comes the nearest to fitting.

This can be easily related to the Multi-dimensional Scaling technique (MDS;
Kruskal 1964) which projects a multi-dimensional matrix to a two-dimensional
representation. Consider the task of placing the position of a recalcitrant lan-
guage in relation to other established subgroups, say Armenian. The first step
in this model will create a MDS diagram of IE languages without Armenian
and then repeat the step with Armenian to see the shift in the positions of other
languages due to the introduction of Armenian. A much simpler case would
be to remove a pivotal language such as Sanskrit – that provided evidence for
stress patterns in PIE (cf. Verner’s law) – to produce a MDS representation and
then repeat the step to see the shift of the languages in the fuller picture.

Given the recent application of biological network software to linguistic
data, Nichols and Warnow (2008) divide the mesh-like representations into
two categories: implicit and explicit networks. Implicit networks do not show
the explicit interaction (such as borrowing and diffusion) between two inde-
pendent languages such as French and English but show a mass of inherited
linguistic material at the center of the network. The farther one gets away from
the center and towards the branches of the network, the greater linguistic di-
vergence one observes in the daughter languages. An example of such a net-
work drawn from the cognate data of the Dravidian Etymological Dictionary
(Burrow and Emeneau 1984) is given in figure 2.5. Explicit networks show
the contact scenario between the different branches in a family tree and are
inferred from the three kinds of evidence (Nakleh, Ringe and Warnow 2005).

2.3.2.4 The comparative method as an iterative technique

The comparative method as explained in the previous section is iterative in na-
ture. The flowchart presented in figure 2.1 captures the iterative aspect of the
comparative method. In the initial stages, the method accumulates evidence
from basic vocabulary comparison and either reinforces or weeds out putative
daughter languages from comparison. Just as sound change that is character-
ized to affect the suitable parts of vocabulary so does the comparative method
adds more evidence to it as it scans through more linguistic material. The ini-
tial set of languages is always based on diagnostic evidence and not grounded
in solid evidence. As Nichols (1996) notes, some branches of Indo-European
such as Slavic were always known to be related due to the medieval records
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Figure 2.5: A network diagram of 28 Dravidian languages based on grammatical
and phonological features (Rama and Kolachina 2013).

which were part of the Germanic philological tradition. As the structure of
the language family becomes concrete, the remaining proto-language systems
are established with evidence from the neighboring daughter languages as well
other intermediary ancestors (inverted reconstruction; Anttila 1989: 345–346).

The modus operandi of the comparative method has parallels in LT. Many
LT systems which work in the semi-supervised fashion begin with a seed list of
annotated linguistic examples. The seed list is supposedly small and the orig-
inal LT system is supposed to achieve high accuracy. In the next step, more
unannotated linguistic examples are supplied to the LT system for the classifi-
cation task and a human annotator judges the performance of the LT system on
each unannotated example as correct or incorrect at the end of a step. The cor-
rect examples are added back to the original seed list to train the next version
of LT system. This process is repeated until there is no increase in the accuracy
of the LT system.

Hauer and Kondrak (2011) employs this paradigm to boost a cognate iden-
tification system’s accuracy by self-learning the language relatedness param-
eter. SMT systems are another LT parallel to the comparative method. Given
a large parallel corpus of two languages with no other linguistic annotation,
SMT systems would like to learn the phrase to phrase translations between the
language. In the first iteration, any source language phrase can be mapped to
target language phrase with equal chance. As the learning proceeds, the prob-
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abilities (evidence) for the source-target maps change and reach a local opti-
mum where the evidence does not change over iterations. In a similar fashion,
as evidence for language relationship accumulates, the comparative method’s
earlier predictions are subjected to change.

Bouchard-Côté et al. (2013) reconstruct Proto-Austronesian lexemes from
the 200-word Swadesh list of 659 Austronesian languages. They assumed the
tree topology of Austronesian language family as given and then proceeded
to reconstruct the proto-word forms of the 200 meanings. It has to be noted
that their method does not come close to the comparative method as the tree
structure is given by linguists and not inferred from the data. Unfortunately,
these authors reduce the reconstruction step to a search procedure over a tree
topology inferred from the comparative method. Hence, there is an inherent
circularity in their method.

2.4 Alternative techniques in language classification

The standard historical linguistics textbooks list lexicostatistics and glotto-
chronology as the alternative techniques in language classification. However
none of them note that positing genetic proximity based on cognate counts
and the counts of shared phonological and grammatical innovations preceded
lexicostatistics. This crucial point is noted by Swadesh (1959) where Kroeber
in 1907 used the established innovations to draw a two-dimensional proximity
maps for Californian languages. Campbell (2004) also makes the point that
only a shared innovation can be used to classify languages. This brings us to
an important question if there can be any method other than the comparative
method to establish subgroups or classify languages. The rest of the section is
on lexicostatistics and the recent classification methods that are beyond lexico-
statistics. According to Wichmann (2013a), the textbooks usually portray the
other methods as discredited.

2.4.1 Lexicostatistics

The lexicostatistical technique as introduced by Swadesh (1950) works on
standardized multi-lingual word lists. In contrary to the popular conception
that the similarities between two word lists are based on look-alikes, two words
are judged to be similar if and only if they are cognates. The meanings in these
lists are supposed to be resistant to borrowing and internal lexical replacement.
The important question is how did Swadesh arrive at such a list? The multiple
families studied in CHL show that the list is actually robust and the classifica-
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tions inferred from the standardized word lists come close to the classifications
proposed through the comparative method (Greenhill and Gray 2009; Wich-
mann et al. 2010a).

The issue of origin is investigated by Tadmor, Haspelmath and Taylor (2010).
The authors quote from Swadesh (1971: 19) about the creation and refinement
process from 215-word list to 100-word list.

In counting and statistics, it is convenient to operate with representative
samples, that is, a portion of the entire mass of facts so selected as to
reflect the essential facts. For our lexical measure of linguistic diver-
gence we need some kind of selected word list, a list of words for which
equivalents are found in each language or language variant [. . . ]

Apart from using the word lists for glottochronological studies, Swadesh in-
tended to make the 100-word list a diagnostic vocabulary for investigating
known as well as suspected language relationships.

2.4.2 Beyond lexicostatistics

A large amount of research has been conducted based on the 100/200 -word
lists. The availability of plug-and-play biological software spurred researchers
to apply the methods to the Swadesh word lists to yield family trees based
on distance-based methods as well as character-based methods. An excerpt of
such input data is given in tables 2.4 and 2.5.

Items Danish Swedish Dutch English

‘person’ menneske/1 människa/1 mens/1 person/2
‘skin’ skind/1 skinn/1, hud/2 huid/2 skin/1

Table 2.4: Two lexical characters for four Germanic languages (Wichmann 2010a:
77–78). Each cell corresponds to a word form in a language and its cog-
nacy state. word forms with the same state are cognates.

• Distance-based methods. The pair-wise cognate judgments are coded
as sequence of ‘1’s and ‘0’s (cf. table 2.5) and the difference between
the character sequences is fed to a distance based algorithm. Some pop-
ularly used distance-based algorithms are Neighbor-Joining (NJ), Un-
weighted Pair Group Method with Arithmetic Mean (UPGMA), Fitch-
Margoliash, and FastME (Fast Minimum Evolution). All the distance
methods try to optimize a criteria such as sum of the branches on the tree
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Items Danish Swedish Dutch English

‘person-1’ 1 1 1 0
‘person-2’ 0 0 0 1
‘skin-1’ 1 1 0 1
‘skin-2’ 0 1 1 0

Table 2.5: The binary encoding of the lexical characters given in table 2.4 (Wich-
mann 2010a: 79).

(tree length) or a function of the tree length. Sometimes, orthographic or
phonetic-based similarity is also supplied as an input to the distance al-
gorithms (Felsenstein 2004: chapter 11).

• Character-based methods. These methods also work on a sequence of
characters but instead try to fit the data to a model of evolution. Maxi-
mum Parsimony is one such evolutionary principle which demands that
the best tree for the data is the one which explains the change from an-
cestral characters to the daughter languages in least number of steps.
Maximum likelihood is another method which yields a metrical tree.
This method employs parameters such as branch length, frequency of
change of a character from 1 
 0, and also the differential rate of evo-
lutions across characters as well as branches. An example of such char-
acters is that grammatical features change at a much slower rate than
lexical features; and the Anatolian branch (Hittite, Luwian, and Lycian)
of the IE family are conservative (Hock and Joseph 2009: 504). The
Bayesian approach includes maximum likelihood as a component and
also includes a prior weight to the tree under consideration (Felsenstein
2004: chapters 1, 16, and 18).

The international consortium of scholars centered at Leipzig12 applied Lev-
enshtein distance for triangulating the urheimat (homeland) of language fam-
ilies, dating of the world’s languages, and language classification. The Auck-
land group13 has applied Bayesian techniques to various issues such as dating
of PIE and Proto-Austronesian, the populating chronology of Pacific islands,
and rates of evolution of typological universals.

Multilateral comparison is another alternative language classification tech-
nique developed by Greenberg (1993). This method consists of visual inspec-
tion of large word tables similar to the one in table 2.4. A large number of lan-
guages are compared in a single go and similarity between languages are used

12http://email.eva.mpg.de/~wichmann/ASJPHomePage.htm
13http://language.psy.auckland.ac.nz/austronesian/
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to propose a subgrouping for the languages. Greenberg’s aim was to propose a
single super-family for a large number of Eurasian families. His methods have
been criticized vigorously (Ringe 1992) due to the lack of support of statistical
significance.

2.5 A language classification system

The computational modeling of the entirety of the comparative method would
require a language classification system which models each step of the com-
parative method. Steiner, Stadler and Cysouw (2011) propose such a system
(cf. figure 2.6) and applies it to the classification of a Caucasian group of lan-
guages and some South American languages that figure in the Intercontinental
Dictionary Series (Borin, Comrie and Saxena 2013).

Figure 2.6: A pipeline for a language classification system.

One can easily see that pair-wise alignments are used to build multiple
alignments following Meillet’s rule of thumb for including at least three lan-
guages into comparison. However, multiple-alignment of words is not a straight-
forward task since it is a NP-complete problem. The NP-completeness is cir-
cumvented through the use of pair-wise alignments in an iterative or progres-
sive fashion (Durbin et al. 2002: 134–159). The next section summarizes the
different tree evaluation techniques and the computation of deviation from
tree-likeness (reticulation) in CHL.

2.6 Tree evaluation

In this section, various tree comparison and a reticulation measures are de-
scribed. The aim of this section is to provide a summary of various tree com-
parison measures which are used for evaluating language classification sys-
tems. A tree comparison measure quantifies the difference between the family
tree inferred from automatic language classification systems and the family
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tree inferred from the comparative method. This section also provides a de-
scription of a reticulation measure called δ . The comparative method assumes
that languages diverge in a step-by-step fashion yielding a tree. However, it
is widely known that language evolution is not always tree-like. For instance,
English has borrowed French vocabulary but is still a Germanic language due
to its descent from Proto-Germanic. As noted previously, a network model is
a graphical device of the amount of deviation of tree-likeness. But it does not
provide a number for the amount of deviation. The δ measure fills in this gap
and provides a score for deviation from tree-likeness. The four different tree
comparison techniques and δ are described in the next section.

2.6.1 Tree comparison measures

Robinson-Foulds (RF) Distance. The RF distance is defined as the number of
dissimilar bipartitions between an inferred tree and gold-standard tree. A bi-
partition is a pair of language sets resulting from the removal of a internal edge
in a phylogenetic tree. For a phylogenetic tree with N languages, there are at
most N−3 bipartitions. Thus, the RF distance measures the dissimilarity in the
topology between the inferred tree and the corresponding family tree. It should
be noted that the RF distance does not take branch lengths into account. Any
tree inference algorithm yields a phylogenetic tree with branch lengths. RF
distance throws away the branch length information when comparing the in-
ferred tree with the family tree. Steel and Penny (1993) introduced three other
measures as alternatives to RF distance. Each of these measures are described
in detail below.

Branch Score Difference (BSD). BSD is related to RF and takes into account
branch lengths. Instead of computing the number of dissimilar partitions be-
tween the inferred tree and family tree, BSD computes the sum of the absolute
difference in each of the internal branch lengths in the two trees. If an internal
branch is absent in one tree and present in the other tree then the branch length
for the absent branch is treated as zero.

Path Length Distance (PD). This measure is based on the idea that the
distance between two languages can be expressed as the number of edges
(branches) in the shortest path (in the tree) connecting the two languages. Each
cell of a path length matrix (PDM) consists of the path length between a pair
of languages in a phylogenetic tree. PD is computed as the square root of the
average of the square of the difference between each cell of the PDM of the
inferred tree and the corresponding cell in the PDM of the linguistic tree.

Weighted Path Length Distance (WPD). WPD is computed in a similar fash-
ion to that of PD except that the path length for a pair of languages, is computed



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 49 — #63 i
i

i
i

i
i

2.6 Tree evaluation 49

as the sum of the branch lengths of the edges in the path connecting the pair of
languages. The WPD matrix (WPDM) is computed similarly to the PD matrix
and the WPD is computed as the square root of the average of the square of the
difference between each cell of WPDM of the inferred tree versus the family
tree.

2.6.2 Beyond trees

Delta (δ ). Given a distance matrix d for a language family, δ , the measure of
reticulation, is computed as follows:

1. There are
(N

4

)
quartets for a language family of size N. A quartet, q, is

defined as a set of four languages, {i, j,k, l}. Enumerate all the quartets
for a language family.

2. The distance sub-matrix for a quartet can be represented by a tree. If
the distances represented in a quartet tree are exactly the same as the
distances given in the sub-matrix, then the tree is called additive. An
example of additive trees is given in figure 2.7.

3. The relation between all the pair-wise distances, in a quartet, can be
expressed as follows:

di j +dkl ≥ dik +d jl ≥ dil +d jk (1)

4. The so-called four point condition is based on (1) and can be expressed
as follows:

di j +dkl = dik +d jl ≥ dil +d jk (2)

Figure 2.7: Additive trees for a quartet Figure 2.8: Reticulate quartet

Computation: An example of a reticulate quartet is shown in figure 2.8. It
carries labels similar to those given in Holland et al. (2002). The labels repre-
sent the lengths of each of the 8 edges in the reticulate quartet.
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1. The amount of deviation from treelikeness – reticulation – of a quartet
can be measured as a deviation from (1).

2. The reticulation measure δ for a quartet is computed as δ = s
l where,

s = di j +dkl−dik−d jl and l = di j +dkl−dil−d jk.

3. δ ranges from 0 (when the quartet is additive) to 1 (when the box is a
square). The δ for a family is computed through the average of the δ

across all the quartets.

4. Wichmann et al. (2011a) suggest the idea of computing the δ for each
language in a family but do not pursue this line of investigation further,
instead computing δ for few chosen languages only. δ for a language is
computed as the average of δ s of all the quartets in which a language
participates.

Gray, Bryant and Greenhill (2010) compare a related measure of reticulation,
Q-residual with δ . The reported results are not right since the software Split-
sTree (Huson and Bryant 2006) was discovered to have a bug (Wichmann et al.
2011a).

2.7 Dating and long-distance relationship

Any standard textbook in historical linguistics (Trask 1996; Campbell 2004;
Hock and Joseph 2009; Crowley and Bowern 2009) has a chapter on lan-
guage classification (or relationship) followed by a chapter on macro-families,
proto-world, and long-distance relationships. Only Trask 1996 and Crowley
and Bowern 2009 follow the macro-families chapter with a description of sta-
tistical techniques employed for assessing the significance of long-distance
relationships.

The chapter(s) on language classification consists of the comparative met-
hod and its demonstration to a medium-sized language family, such as Mayan
or Dravidian family. For instance, Campbell (2004) has a chapter on the com-
parative method and illustrates the use of shared innovation in subgrouping
of Mayan language family. Likewise, Trask (1996) demonstrates the recon-
struction of part of Proto-Western Romance vocabulary through the applica-
tion of the comparative method to synchronic Romance language vocabulary
lists. The chapter on reconstruction of proto-world is usually characterized as a
maverick approach in historical linguistics. Any quantitative technique which
attempts at dating the divergence time of a language into its daughter languages
is bundled together with glottochronology.
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Interestingly, Campbell (2004) uses the terms glottochronology and lexico-
statistics interchangeably. Although both the methods use the same datasets,
their object of investigation is different. It has to be kept in mind that lexico-
statistics is concerned with subgrouping whereas glottochronology provides a
divergence date to a pair of languages. The merits and demerits of the quan-
tification of time depth in historical linguistics is addressed in a collection of
articles edited by Renfrew, McMahon and Trask (2000). The main criticism
against glottochronology is that the method works with a constant rate of lex-
ical replacement (in general, language change). However, the recent phyloge-
netic techniques (cf. section 2.4.2) do not necessarily assume a constant rate of
language change. Hence, the trees inferred from modern methods can be dated
using much sophisticated statistical techniques (Gray and Atkinson 2003).
Even McMahon and McMahon 2005, who employ the latest computational
techniques from computational biology to classify languages from Andes to
Indo-Aryan languages (McMahon and McMahon 2007) spoken in Northern
India refrain from assigning dates to splits (McMahon and McMahon 2005:
177).

Given that there is such a huge criticism against the aforementioned tech-
niques, how come there are so many posited families? Is the comparative
method highly successful in positing these families? Unfortunately, the answer
is no. There are only few language families which are posited by the compar-
ative method. For instance, consider the languages spoken in New Guinea.
There are more than 800 languages spoken in the small island which do not
belong to Austronesian language family. How are these languages classified?
In fact, the recent textbook of Hock and Joseph 2009: 445–454 does not list
any of New Guinea’s languages. Interestingly, many of the proposed language
families in New Guinea are proposed based on cognate counts, similarities in
pronouns, typological similarity or geographical similarity (Wichmann 2013b:
originally from Foley 1986). The situation for South American languages is
only a little better (Hammarström 2013), with many well established families,
but also many relations that remain to be worked out using the comparative
method (cf. Campbell 2012 for progress in this regard).

Long-distance genetic proposals is a contentious topic in historical linguis-
tics. Probabilistic testing of suspected long-distance relationships or linguistic
hypotheses is met with skepticism. In a survey, Kessler (2008: 829; my em-
phasis) makes the following observation:

Probabilistic analysis and the language modeling it entails are worthy
topics of research, but linguists have rightfully been wary of claims of
language relatedness that are based primarily on probabilities. If nothing
else, skepticism is aroused when one is informed that a potential long-
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range relationship whose validity is unclear to experts suddenly becomes
a trillion-to-one sure bet when a few equations are brought to bear on
the task.

Examples of such probabilistic support from Kessler 2008: 828:

• Nichols (1996) demonstrates that any language with an Indo-European
gender system would be, in fact, Indo-European. She did this by count-
ing frequencies of languages that have genders, that a language should
have at least three genders, that one of the gender markers should be
-s, and so on from a large number of languages. The final number for
chance similarity is .57× 10−6 which is such a small number that the
original hypothesis cannot be ruled out as a case of chance similarity.

• Dolgopolsky (1986) found similarities between words for 13 concepts
and ruled out the chance similarity with a numerical support of 10−20.
The small number provides support for a broad Sibero-European lan-
guage family.

Summarizing, any attempt at comparing the proto-languages of even spa-
tially proximal families is usually viewed with suspicion. The next subsection
discusses the reality of linguistic reconstruction and attempts at correlating the
linguistic evidence with archaeological and other kinds of evidence.

2.7.1 Non-quantitative methods in linguistic paleontology

Linguistic paleontology makes inferences on the culture, society, and ecology
of prehistoric peoples based on reconstructed linguistic evidence (Hock and
Joseph 2009: 481). Linguistic paleontology opens a window into the differ-
ent aspects of life of prehistoric populations. Borrowed words corresponding
to a technical innovation, names of places, and names of people allow his-
torical linguists to assign a date to important linguistic changes affecting a
pre-language. Migration histories also provide evidence for the split of the
current languages from their ancestor. For instance, the vocabulary reconstruc-
tions of domesticated animals in PIE are taken to indicate that the PIE speakers
were food-producers. The appearance of loan words and the subsequent sound
changes they triggered, also allow historical linguists to assign a date to the
sound change. For instance, looking into the Romani vocabulary and tracing
the sources of loans provides information on the pattern of migration of Ro-
mani people into Europe.
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Locating the probable geographical source of proto-language speakers is
a highly debated topic. Historical evidence shows that the migrations of Ger-
manic speakers caused the split of the Germanic ancestral language and this
occurred about 2100 BP (before present). This date is considered as the an-
tiquity of Proto-Germanic. The split date of Slavic languages is given around
1500 BP since the written records of sixth century describe the state of politi-
cal affairs and geographic expansion of the Common Slavic language (Holman
et al. 2011). The skepticism regarding the search for putative homelands can
be summarized in the following quote of Mallory (1989: 143).

the quest for the origins of the Indo-Europeans has all the fascination
of an electric light in the open air on a summer night: it tends to attract
every species of scholar or would-be savant who can take pen to hand

Sapir (1916) proposes a model for locating proto-language homelands call-
ed the centre of gravity model. Under this model, the homeland of a language
family is the region that shows the highest amount of linguistic diversity. The
homeland for a language family has the highest amount of divergence in terms
of languages belonging to the oldest branches of the family since this point
corresponds to the initial divergence of the language family.

The questions of dating, finding homelands, and evolution of cultural traits
had been addressed from a computational perspective in recent years. A few
examples of such research are:

• Holden (2002) applies maximum parsimony to show that the Bantu fam-
ily’s language trees reflect the spread of farming in sub-Saharan Africa.

• Jordan et al. (2009) apply Bayesian techniques to study the evolution
of matrilocal residence from Proto-Austronesian. This is done by ex-
amining the evolution of matrilocal traits in the different Austronesian
languages.

• Wichmann, Müller and Velupillai (2010) implement Sapir’s idea, find-
ing the area of greatest diversity based on lexical evidence and identify
that area with the homeland; the approach is applied across the world’s
language families.

• Walker et al. (2012) apply Bayesian techniques to study the cultural evo-
lution in the Tupian language family in Lowland South America.

• Bouckaert et al. (2012) apply Bayesian techniques to map the origins
and expansions of the Indo-European language family.
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In conclusion, a combination of computational, statistical, linguistic, and
anthropological techniques can help address some questions about the origin
and spread of language families both spatially and temporally.

2.8 Conclusion

This chapter presented a linguistic introduction to the processes of linguistic
change, models of language evolution, computational modeling of the linguis-
tic changes, and the recent developments in computational historical linguis-
tics. The next chapter will summarize the various linguistic databases that re-
sulted from digitization as well as new efforts to augment the older vocabulary
and typological databases.
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This chapter describes the various linguistic databases used for language clas-
sification. The papers listed in the second part of the thesis describe the Au-
tomated Similarity Judgment Program (ASJP) database, World Atlas of Lan-
guage Structures (WALS) database, and the Europarl parallel corpora (from
European parliamentary proceedings). Thus, this chapter will focus on lin-
guistic databases which are not listed in part II of the thesis. The linguistic
databases used in language classification can be classified into the following
three types.

• Cognate databases. Linguistic databases that show the state of phono-
logical, lexical, and grammatical features (characters) across a language
family. Core vocabulary databases with or without cognate judgments.

• Typological databases presenting the variation of a typological feature
on a graded scale.

• There are other linguistic databases that show linguistic features such as
phoneme inventory size and part-of-speech annotation.

3.1 Cognate databases

Core vocabulary databases are parallel word lists for a language group. The
size of the word lists usually range from 40–215 in these databases. The basic
vocabulary databases are lexical in nature and may also carry cognate judg-
ments. The core vocabulary databases can be used for lexicostatistical studies
and also as an input to the distance-based or character-based phylogenetic al-
gorithms (cf. section 2.4.2).
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3.1.1 Dyen’s Indo-European database

Dyen, Kruskal and Black (1992) prepared a lexicostatistical database of 95
Indo-European speech varieties for 200 concepts. The database has word forms
and cognate judgments for the Celtic, Germanic, Indo-Iranian, Baltic, Slavic,
Greek, Armenian, and Albanian branches of IE. The word forms in the database
are not phonetically transcribed and hence, are not fit for phonetic analysis or
computing phonetic similarity distances between the speech varieties. How-
ever, the database was used for the purposes of cognate identification and in-
ference of a Levenshtein-distance based IE tree (Ellison and Kirby 2006).

3.1.2 Ancient Indo-European database

Ringe, Warnow and Taylor (2002) designed a database consisting of IE word
lists for 24 ancient Indo-European languages. The database has 120 concepts
in addition to the 200 Swadesh concepts, 15 morphological characters, and
22 phonological characters. Each character can exhibit multiple states. The
presence of the ruki rule – change of PIE */s/ to */š/ before */r/, */u/, */k/,
or */i/ – is coded as 2 in Indo-Iranian and Balto-Slavic languages and its ab-
sence as 1 in other IE languages. Whenever a meaning has two forms, each
form is coded as a separate character and the cognate judgments are assigned
accordingly. For instance, Luvian shows two word forms for the concept ‘all
(plural)’. Each word form is cognate with word forms present in some other
IE languages. Thus, the two word forms are listed as separated characters.
Nakhleh et al. (2005) compare the performance of various distance-based and
character-based algorithms on this dataset.

3.1.3 Intercontinental Dictionary Series (IDS)

IDS is an international collaborative lexical database for non-prestigious and
little known languages. The database is organized into 23 chapters consisting
of 1,310 concepts. The database has a large collection of languages from South
America and the Caucasus region. The database has 215 word lists which are
available for online browsing and download (Borin, Comrie and Saxena 2013).
An extended concept list is proposed in the Loanword Typology Project (LWT)
described in the next section. Cysouw and Jung (2007) use the IDS word lists
from English, French, and Hunzib for cognate identification through multi-
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gram alignments.14

3.1.4 World loanword database

The World Loanword Database, under the auspices of LWT, is a collabora-
tive database edited by Haspelmath and Tadmor (2009a). This database is an
extension of the concept lists proposed in the IDS project. The meanings are or-
ganized into 24 semantic fields. For each concept, the database contains word
forms, the gloss of a word form, the source of the borrowing (if it is a bor-
rowing) and the expert’s confidence on the borrowing on a scale of 1–5, and
the age of the word for 41 languages. The age of the word is the time of the
earliest attestation or reconstruction for a non-borrowed word; for a borrowed
word, age is the time period in which the word was borrowed. Tadmor, Haspel-
math and Taylor (2010) apply the criteria such as (a) fewest borrowed coun-
terparts (borrowability), (b) representation (fewest word forms for a meaning
in a language), (c) analyzability (for a multi-word expression), (d) age to ar-
rive at a 100-word list called the Leipzig-Jakarta list. The 100-word Leipzig-
Jakarta concept list has 60 concepts in common with the 100-word Swadesh
list. Holman et al. (2008a) develop a ranking procedure to rank the meanings of
the 100-word Swadesh list according to lexical stability and correlate stability
ranks and borrowability scores from the still unpublished results of the LWT,
finding the absence of a correlation, suggesting, importantly, that borrowability
is not a major contributor to lexical stability.

3.1.5 List’s database

List and Moran (2013) developed an python-based open-source toolkit for
CHL. This toolkit implements the pipeline described in chapter 2 (cf. fig-
ure 2.6). The authors also provide a manually curated 200-word Swadesh list
for the Germanic and Uralic families, Japanese and Chinese dialects. The word
lists are encoded in IPA and the toolkit provides libraries for automatic con-
version from IPA to coarser phonetic representations such as ASJP and Dolgo-
polsky’s sound classes.

14A n-gram of length i in language A is mapped to a n-gram of length j in language B where
1≤ i, j ≤ n.



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 58 — #72 i
i

i
i

i
i

58 Databases

3.1.6 Austronesian Basic Vocabulary Database (ABVD)

ABVD15 (Greenhill, Blust and Gray 2008) is a vocabulary database for 998
Austronesian languages. The database has 203,845 lexical items for the Swad-
esh concept list (of length 210). The database has cognate judgments and has
been widely used for addressing a wide-range of problems in Austronesian
historical linguistics (Greenhill and Gray 2009).

3.2 Typological databases

3.2.1 Syntactic Structures of the World’s Languages

Syntactic Structures of the World’s Languages (SSWL)16 is a collaborative,
typological database of syntactic structures for 214 languages. Although the
data is available for download, not much is known about the current state of its
development.

3.2.2 Jazyki Mira

Jazyki Mira is a typological database which is very much like WALS but with
fuller coverage for a smaller set of Eurasian languages (Polyakov et al. 2009).
Polyakov et al. (2009) compare the calculations of typological similarity and
temporal stability of language features from the data obtained from WALS and
Jazyki Mira.

3.2.3 AUTOTYP

AUTOTYP (Autotypology) is another typological database based at the Uni-
versity of Zurich (Bickel 2002). Rather than working with pre-defined list of
typological features, the project modifies the list of typological features as
more languages enter into the database. The database was used for investi-
gating quantitative and qualitative typological universals (Bickel and Nichols
2002).

15Accessed on 2nd December 2013.
16http://sswl.railsplayground.net/



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 59 — #73 i
i

i
i

i
i

3.3 Other comparative linguistic databases 59

3.3 Other comparative linguistic databases

There are some databases which are indirectly related to CHL but so far have
not been employed for language classification.

3.3.1 ODIN

Online Database of Interlinear Text (ODIN; Lewis and Xia 2010) is an au-
tomatically extracted database from scholarly documents present on the web.
The database has more than 190,000 instances of interlinear text for more than
1,000 languages. The database provides search facilities for searching the lan-
guage data and the source of the data. The database is available for download.
The authors parse the English gloss text and project the syntactic structures
to the original language data creating a parallel treebank in the process. The
database also allows search by syntactic trees and categories.

3.3.2 PHOIBLE

PHOnetics Information Base and LExicon (PHOIBLE)17 is a phonological and
typological database for more than 600 languages. The database has phone-
mic and allophonic inventories, and the conditioning environments that are ex-
tracted from secondary sources like grammars and other phonological databas-
es (Moran 2012).

3.3.3 World phonotactic database

The World phonotactic database has been recently published by a group of re-
searchers at the Australian National University (Donohue et al. 2013). The
database contains phonotactic information for more than 2,000 languages,
and segmental data for an additional 1,700 languages. The main focus of this
database is on the languages of the Pacific region.

3.3.4 WOLEX

The World Lexicon of Corpus is a database of lexicons extracted from gram-
mars and corpora for 47 languages by Graff et al. (2011). The website18 lists

17Accessed http://phoible.org/ on 2nd December 2013.
18http://qrlg.blogspot.se/p/wolex.html
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the 47 languages, size of lexicon, and the source of data. Nothing much is
known about the methodology and development of the corpus from the web-
site of the project.

3.4 Conclusion

In this chapter, various linguistic databases are summarized. Not all of the
databases have been used for language classification. As noted by Borin, Com-
rie and Saxena (2013), using larger word lists (such as IDS) would be useful in
investigating the rarer linguistic phenomena since the data requirement grow
on an exponential scale (Zipf’s law). To the best of our knowledge, except for
the Ancient languages IE database and ABVD, the rest of the databases have
not been exploited to their fullest for comparative linguistic investigations.
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WORK

This chapter summarizes the work reported in the thesis and provides pointers
to future work.

4.1 Summary

Chapter 1 places the work in part II in the context of LT and gives related
work in CHL. Further, the chapter gives an introduction to some problems and
methods in traditional historical linguistics.

Chapter 2 introduces the concepts of linguistic diversity and differences,
various linguistic changes and computational modeling of the respective chan-
ges, the comparative method, tree inference and evaluation techniques, and
long-distance relationships.

Chapter 3 describes various historical and typological databases released
over the last few years.

The following papers have as their main theme the application of LT tech-
niques to address some of the classical problems in historical linguistics. The
papers Rama and Borin 2013, Rama 2013, and Rama and Borin 2014 work
with standardized vocabulary lists whereas Rama and Borin 2011 works with
automatically extracted translational equivalents for 55 language pairs. Most of
the work is carried out on the ASJP database, since the database has been cre-
ated and revised with the aim of maximal coverage of the world’s languages.
This does not mean that the methods will not work for larger word lists such
as IDS or LWT.

Rama 2013 provides a methodology on automatic dating of the world’s
languages using phonotactic diversity as a measure of language divergence.
Unlike the glottochronological approaches, the explicit statistical modeling
of time splits (Evans, Ringe and Warnow 2006), and the use of Levenshtein
distance for dating of the world’s languages (Holman et al. 2011), the paper
employs the type count of phoneme n-grams as a measure of linguistic diver-
gence. The idea behind this approach is that the language group showing the
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highest phonotactic diversity is also the oldest. The paper uses generalized lin-
ear models (with the log function as link, known as Γ regression) to model the
dependency of the calibration dates with the respective n-grams. This model
overcomes the standard criticism of “assumption of constant rate of language
change” and each language group is assumed to have a different rate of evolu-
tion over time. This paper is the first attempt to apply phonotactic diversity as
a measure of linguistic divergence.

The n-gram string similarity measures applied in Rama and Borin 2014
show that n-gram measures are good at internal classification whereas Lev-
enshtein distance is good at discriminating related languages from unrelated
ones. The chapter also introduces a multiple-testing procedure – False Dis-
covery Rate – for ranking the performance of any number of string similarity
measures. The multiple-testing procedure tests whether the differential perfor-
mance of the similarity measures is statistically significant or not. This pro-
cedure has already been applied to check the validity of suspected language
relationships beyond the reach of the comparative method (Wichmann, Hol-
man and List 2013).

Rama and Kolachina 2012 correlate typological distances with basic vocab-
ulary distances, computed from ASJP, and find that the correlation – between
linguistic distances computed from two different sources – is not accidental.

Rama and Borin 2013 explores the application of n-gram measures to pro-
vide a ranking of the 100-word list by its genealogically stability. We compare
our ranking with the ranking of the same list by Holman et al. (2008a). We also
compare our ranking with shorter lists – with 35 and 23 items – proposed by
Dolgopolsky (1986) and Starostin (1991: attributed to Yakhontov) for inferring
long-distance relationships. We find that n-grams can be used as a measure of
lexical stability. This study shows that information-theoretic measures can be
used in CHL (Raman and Patrick 1997; Wettig 2013).

Rama and Borin 2011 can be seen as the application of LT techniques for
corpus-based CHL. In contrast to the rest of papers which work with the ASJP
database, in this paper, we attempt to extract cognates and also infer a phenetic
tree for 11 European languages using three different string similarity measures.
We try to find cognates from cross-linguistically aligned words by imposing a
surface similarity cut-off.

4.2 Future work

The current work points towards the following directions of future work.

• Exploiting longer word lists such as IDS and LWT for addressing vari-
ous problems in CHL.
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• Apply all the available string similarity measures and experiment with
their combination for the development of a better language classification
system. To make the most out of short word lists, skip-grams can be used
as features to train linear classifiers (also string kernels; Lodhi et al.
2002) for cognate identification and language classification.

• Combine typological distances with lexical distances and evaluate their
success at discriminating languages. Another future direction is to check
the relationship between reticulation and typological distances (Dono-
hue 2012).

• Since morphological evidence and syntactic evidence are important for
language classification, the next step would be to use multilingual tree-
banks for the comparison of word order, part-of-speech, and syntactic
subtree (or treelet) distributions (Kopotev et al. 2013; Wiersma, Ner-
bonne and Lauttamus 2011).

• The language dating paper can be extended to include the phylogenetic
tree structure into the model. Currently, the prediction model assumes
that there is no structure between the languages of a language group. A
model which incorporates the tree structure into the dating model would
be a next task (Pagel 1999).

• Application of the recently developed techniques from CHL to digi-
tized grammatical descriptions of languages or public resources such as
Wikipedia and Wiktionary to build typological and phonological databa-
ses (Nordhoff 2012) could be a task for the future.
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5 ESTIMATING LANGUAGE

RELATIONSHIPS FROM A

PARALLEL CORPUS

Taraka Rama, Lars Borin 2011. Estimating Language Relationships from a
Parallel Corpus. A Study of the Europarl Corpus. NEALT Proceedings Series
(NODALIDA 2011 Conference Proceedings). 161–167

Abstract

Since the 1950s, Linguists have been using short lists (40–200 items) of ba-
sic vocabulary as the central component in a methodology which is claimed
to make it possible to automatically calculate genetic relationships among lan-
guages. In the last few years these methods have experienced something of a
revival, in that more languages are involved, different distance measures are
systematically compared and evaluated, and methods from computational bi-
ology are used for calculating language family trees. In this paper, we explore
how this methodology can be extended in another direction, by using larger
word lists automatically extracted from a parallel corpus using word alignment
software. We present preliminary results from using the Europarl parallel cor-
pus in this way for estimating the distances between some languages in the
Indo-European language family.

5.1 Introduction

Automatic identification of genetic relationships among languages has gained
attention in the last few years. Estimating the distance matrix between the lan-
guages under comparison is the first step in this direction. Then a distance
based clustering algorithm can be used to construct the phylogenetic tree for a
family. The distance matrix can be computed in many ways. Lexical, syntactic
and semantic features of the languages can be used for computing this ma-
trix (Ringe, Warnow and Taylor 2002). Of these, lexical features are the most
widely used features, most commonly in the form of Swadesh lists.
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Swadesh lists are short lists (40–200 items) of basic senses which are sup-
posed to be universal. Further, the words expressing these senses in a language
are supposed to be resistant to borrowing. If these two assumptions hold, it
follows that such lists can be used to calculate a numerical estimate of genetic
distances among related languages, an endeavor referred to as lexicostatistics.
A third assumption which was often made in the older literature was that the re-
placement rate of this basic vocabulary was constant and could be expressed as
a constant percentage of the basic vocabulary being replaced over some unit of
time (exponential decay). This third assumption has generally been abandoned
as flawed and with it the body of research that it motivated, often referred to as
glottochronology.

In lexicostatistics, the similarity between two languages is the percentage
of shared cognates between the two languages in such a list. In the terminol-
ogy of historical linguistics, cognates are words across languages which have
descended independently in each language from the same word in a common
ancestor language. Hence, loanwords are not cognates. Cognates are identified
through regular sound correspondences. For example, English∼German night
∼ Nacht ‘night’ and hound ∼Hund ‘dog’ are cognates. If the languages are far
enough removed in time, so that sound changes have been extensive, it is often
far from obvious to the non-expert which words are cognates, e.g. English ∼
Greek hound ∼ kuon ‘dog’ or English ∼ Armenian two ∼ erku ‘two’.

In older lexicostatistical work (e.g. Dyen, Kruskal and Black 1992), cog-
nates are manually identified as such by experts, but in recent years there has
been a strong interest in developing automatic methods for cognate identifica-
tion. The methods proposed so far are generally based on some form of ortho-
graphic similarity19 and cannot distinguish between cognates on the one hand
and loanwords or chance resemblances on the other. Confusingly, the word
pairings or groups identified in this way are often called cognates in the com-
putational linguistics literature, whereas the term correlates has been proposed
in historical linguistics for the same thing (McMahon and McMahon 2005). In
any case, the identification of such orthographically similar words is a central
component in any automatic procedure purporting to identify cognates in the
narrower sense of historical linguistics. Hence, below we will generally refer
to these methods as methods for the identification of cognates, even if they
actually in most cases identify correlates.

There have been numerous studies employing string similarity measures
for the identification of cognates. The most commonly used measure is nor-

19Even though the similarity measures used in the literature all work with written representa-
tions of words, these written representations are often in fact phonetic transcriptions, so that we
can say that we have a phonetic similarity measure. For this reason we will use “orthographic”
and “phonetic” interchangeably below.
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malized edit distance. It is defined as the minimum number of deletions, sub-
stitutions and insertions required to transform one string to another. There have
also been studies on employing identification of cognates using string similar-
ity measures for the tasks of sentence alignment (Simard, Foster and Isabelle
1993), statistical machine translation (Kondrak, Marcu and Knight 2003) and
translational lexicon extraction (Koehn and Knight 2002).

The rest of this paper is structured as follows. Section 5.2 discusses related
work. Section 5.3 explains the motivation for using a parallel corpus and de-
scribes the approach.

5.2 Related work

Kondrak (2002a) compares a number of algorithms based on phonetic and or-
thographical similarity for judging the cognateness of a word pair. His work
surveys string similarity/ distance measures such as edit distance, Dice coeffi-
cient and longest common subsequence ratio (LCSR) for the task of cognate
identification. The measures were tested on vocabulary lists for the Algonquian
language family and Dyen, Kruskal and Black (1992) Indo-European lists.

Many studies based on lexicostatistics and phylogenetic software have been
conducted using Swadesh lists for different language families. Among the no-
table studies for Indo-European are the lexicostatistical experiments of Dyen,
Kruskal and Black 1992 and the phylogeny experiments of Ringe, Warnow and
Taylor 2002 and Gray and Atkinson 2003. In another study, Ellison and Kirby
(2006) used intra-language lexical divergence for measuring the inter-language
distances for the Indo-European language family.

Recently, a group of scholars (Wichmann et al. 2010a; Holman et al.
2008a) have collected 40-item Swadesh word lists for about two thirds of the
world’s languages.20 This group uses a modified Levenshtein distance between
the lexical items as the measure of the inter-language distance.

Singh and Surana (2007) use corpus based measures for estimating the dis-
tances between South Asian languages from noisy corpora of nine languages.
They use a phonetics based similarity measure called computational phonetic
model of scripts (CPMS; Singh, Surana and Gali 2007) for pruning the possi-
ble cognate pairs between languages. The mean of the similarity between the
pruned cognate pairs using this measure is estimated as the distance between
the languages.

20Their collaboration goes under the name of the Automated Similarity Judgement Program
(ASJP) and their current dataset (in late 2010) contains word lists for 4,820 languages, where
all items are rendered in a coarse phonetic transcription, even for those languages where a
conventional written form exists.
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Bergsma and Kondrak (2007) conduct experiments for cognate identifica-
tion using alignment-based discriminative string similarity. They automatically
extract cognate candidate pairs from the Europarl corpus (Koehn 2005) and
from bilingual dictionaries for the language pairs English–French, English–
German, English–Greek, English–Japanese, English–Russian, and English–
Spanish. Bouchard-Côté et al. (2007) also use the Europarl corpus to extract
cognates for the task of modeling the diachronic phonology of the Romance
languages. In neither case is the goal of the authors to group the languages
genetically by family, as in the work presented here. The previous work which
comes closest to the work presented here is that of Koehn 2005, who trains
pair-wise statistical translation systems for the 11 languages of the Europarl
corpus and uses the systems’ BLEU scores for clustering the languages, under
the assumption that ease of translation correlates with genetic closeness.

5.3 Our approach

As noted above, automatic identification of cognates is a crucial step in compu-
tational historical linguistics. This requires an approach in which cognates have
to be identified with high precision. This issue has been discussed by Brew and
McKelvie (1996). They were trying to extract possible English-French transla-
tion pairs from a multi-lingual corpus for the task of computational lexicogra-
phy. Two issues with the automatic methods is the presence of false friends and
false negatives. False friends are word pairs which are similar to each other but
are unrelated. Some examples of false friends in French and English are lux-
ure ‘lust’ ∼ luxury; blesser ‘to injure’ ∼ bless. False negatives are word pairs
which are actually cognates but were identified as unrelated. For our task, we
focus on identifying cognates with a high precision – i.e., few false friends –
and a low recall – i.e., many false negatives. The method requires that the word
pairs are translations of each other and also have a high orthographic similarity.

Section 5.4 introduces the use of the Europarl corpus for cognate identifica-
tion. We extract the cognate pairs between a pair of languages in the following
manner. For every language pair, the corpus is word aligned using GIZA++
(Och and Ney 2003) and the word pairs are extracted from the alignments.
Word pairs with punctuation are removed from the final set. Positive and neg-
ative training examples are generated by thresholding with a LCSR cutoff of
0.58.

The cutoff of 0.58 was proposed by Melamed (1999) for aligning bitexts
for statistical machine translation. The reason for this cutoff is to prevent the
LCSR’s inherent bias towards shorter words. For example, the word pairs
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saw/osa and jacinth/hyacinthe21 have the same LCSR of 2/3 and 4/6 which is
counter-intuitive. If the words are identical, then the LCSR for the longer pair
and the short pair are the same. A word alignment tool like GIZA++ aligns the
words which are probable translations of each other in a particular sentence.

Given cognate lists for two languages, the distance between two languages
la, lb can be expressed using the following equation:

Dist(la, lb) = 1− ∑i sim(li
a, l

i
b)

N
(3)

sim(li
a, l

i
b) is the similarity between the ith cognate pair and is in the range of

[0,1]. String similarities is only one of the many possible ways for computing
the similarity between two words. N is the number of word pairs being com-
pared. Lexicostatistics is a special case of above equation where the range of
the sim function is 0|1. The choice of the similarity function is a tricky one. It
would be suitable to select a function which is symmetric. Another criterion
that that could be imposed is sim(x,y)→ [0,1] where x,y are two strings (or
cognate pairs).

To the best of our knowledge, there is no previous work using these lexical
similarities for estimating the distances between the languages from a parallel
corpus. Section 5.4 describes the creation of the dataset used in our experi-
ments. Section 5.5 describes the experiments and the results obtained. Finally
the paper concludes with a direction for future work.

pt it es da nl fi fr de en
sv 3295 4127 3648 12442 5568 2624 315 9 3087 5377
pt 10038 13998 2675 2202 831 6234 1245 6441
it 11246 3669 3086 1333 7692 1738 7647
es 3159 2753 823 6933 1361 7588
da 6350 2149 3004 3679 5069
nl 1489 2665 3968 4783
fi 955 1043 1458
fr 1545 6223
de 2206

sv : Swedish, pt : Portugese, it : Italian, es : Spanish, da : Danish
nl : Dutch, fi : Finnish, fr : French, de : German

Table 5.1: Number of cognate pairs for every language pair.

5.4 Dataset

The dataset for these experiments is the publicly available Europarl corpus.
The Europarl corpus is a parallel corpus sentence aligned from English to ten

21Taken from Kondrak (2005a)
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Table 5.2: The pairwise distances using Levenshtein Distance, Dice score, Longest
Common Subsequence Ratio. The first, second and third entry in each
cell correspond to Levenshtein distance, Dice and LCSR distances.
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languages, Danish, Dutch, Finnish, French, German, Greek, Italian, Portugese,
Spanish, and Swedish. Greek was not included in this study since it would have
to be transliterated into the Latin alphabet.22 The corpus was tokenized and the
XML tags were removed using a dedicated Perl script. The next task was to
create parallel corpora between all the 45 pairs of languages. English was used
as the bridge language for this purpose. For each language pair, a sentence pair
was included, if and only if there is a English sentence in common to each
sentence. Only the first 100,000 sentence pairs for every language pair were
included in these experiments.23 Sentence pairs with a length greater than 40
words were not included in the final set.

All the languages of the Europarl corpus belong to the Indo-European lan-
guage family, with one exception: Finnish is a member of the Finno-Ugric
branch of the Uralic language family, which is not demonstrably related to
Indo-European. The other languages in the Europarl corpus fall under three
different branches of Indo-European:

1. Danish, Dutch, English, German and Swedish are Germanic languages
and can be further subgrouped into North Germanic (or Scandinavian)
– Danish and Swedish – and West Germanic – Dutch, English and Ger-
man, with Dutch and German forming a more closely related subgroup
of West Germanic;

2. French, Italian, Portuguese and Spanish are Romance languages, with
the latter two forming a more closely related Ibero-Romance subgroup,
joining French at the next level up in the family tree, and Italian being
more distantly related to the other three;

3. Greek forms a branch of its own (but was not included in our experiment;
see above).

We would consequently expect our experiments to show evidence of this
grouping, including the isolated status of Finnish with respect to the other Eu-
roparl corpus languages.

5.5 Experiments

The freely available statistical machine translation system MOSES (Koehn
et al. 2007) was used for aligning the words. The system also extracts the
word alignments from the GIZA++ alignments and computes the conditional

22This is a task for the future.
23The experiments are computationally demanding and take few days to run.
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probabilities for every aligned word pair. For every language pair, the word
pairs that have an LCSR value smaller than the cutoff are discarded. Table 5.1
shows the number of pairwise cognates.

We experiment with three string similarity measures in this paper. Leven-
shtein distance and LCSR are described in the earlier sections. The other mea-
sures are Dice and LCSR. Dice is defined as twice the total number of shared
character bigrams between two words divided by the total number of bigrams.
In the next step, the normalized Levenshtein distance (NLD) between the likely
cognate pairs are computed for every language pair. The Levenshtein distance
between two words is normalized by the maximum of the length of the two
words to account for the length bias. The distance between a language pair is
the mean of all the word pairs’ distances. The distance results are shown in
table 5.2. Dice and LCSR are similarity measures and lie in the range of [0,1].

We use these distances as input to a hierarchical clustering algorithm, UP-
GMA available in PHYLIP (Felsenstein 1993), a phylogeny inference pack-
age. UPGMA is a hierarchical clustering algorithm which infers a ultrametric
tree from a distance matrix.

5.6 Results and discussion

Finnish is clearly the outlier when it comes to shared cognate pairs. This is
shown in bold in table 5.1. Not surprisingly, Finnish shares the highest num-
ber of cognates with Swedish, from which it has borrowed extensively over a
period of several hundred years. Table 5.2 shows the pair-wise language dis-
tances. The last column shows the language that has the maximum and mini-
mum similarity for each language and distance.

Figures 5.1, 5.2, and 5.3 show the trees inferred on the basis of the three
distance measures. Every tree has Spanish, Portugese and Italian under one
subgroup, and Danish, Swedish and German are grouped together in all three
trees. Finnish is the farthest group in all the trees except in tree 5.2. The closest
languages are Danish and Swedish which are grouped together. Spanish and
Portugese are also grouped as close relatives. The trees are not perfect: For
instance, French, English and Dutch are grouped together in all the trees.

One can compare the results of these experiments with the tree inferred us-
ing Swadesh lists, e.g. the results by Dyen, Kruskal and Black (1992), which on
the whole agree with the commonly accepted subgrouping of Indo-European
(except that according to their results, English is equally far apart from Dutch/
German and Danish/Swedish). However, for its successful application to lan-
guage subgrouping problems, Swadesh lists rely on a large amount of expert



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 75 — #89 i
i

i
i

i
i

5.6 Results and discussion 75

manual effort, both in the compilation of a Swadesh list for a new language24

and in making the cognacy judgements required for the method used by Dyen,
Kruskal and Black (1992) and others.

Working with corpora and automated distance measures, we are in a po-
sition both to bring more languages into the comparison, and avoiding the
admitted subjectivity of Swadesh lists,25 as well as potentially being able to
draw upon both quantitatively and qualitatively richer linguistic data for the
purposes of genetic classification of languages.

Instead, we compare our results with the only similar previous work that
we are aware of, viz. with the tree obtained by Koehn (2005) from BLEU
scores. Koehn’s tree gets the two major branches of Indo-European – Germanic
and Romance – correct, and places Finnish on its own. The subgroupings of
the major branches are erroneous, however: Spanish is grouped with French
instead of with Portugese, and English is grouped with Swedish and Danish
instead of forming a group with German and Dutch.

Using corpora rather than carefully selected word lists brings noise into the
comparison, but it also promises to bring a wealth of additional information
that we would not have otherwise. Specifically, moving outside the putative
core vocabulary, we will pick up evidence of language contact in the form of
borrowing of vocabulary and historical spread of orthographical conventions.
Thus, one possible explanation for the grouping of Dutch, English and French
is that the first two have borrowed large parts of the vocabulary used in the
Europarl corpus (administrative and legal terms) from French, and additionally
in many cases have a spelling close to the original French form of the words
(whereas French loanwords in e.g. Swedish have often been orthographically
adapted, for example French jus ∼ English juice ∼ Swedish sky ‘meat juice’).

Some preliminary results of the experiments are given in table 2. For every
language, Finnish has the least number of cognates.26 Finnish shares the high-
est number of cognates with Swedish. This could be due to the large number
of borrowings from one language to the other. Swedish shares the cognates in
the following order: Danish, German, Dutch, English and then with Spanish,
Italian, French and Portugese. Also the romance languages, French, Italian,
Spanish excepting Portugese, share their highest number of cognates with each

24It is generally not a straightforward task to determine which item to list for a particular
sense in a particular language, whether to list more than one item, etc.

25The Swadesh lists were originally compiled on the basis of linguistic experience and intu-
ition about which senses should be universally available as words in languages and which words
should be most resistant to replacement over time. These assumptions are only now beginning
to be subjected to rigorous empirical testing by typological linguists, and it seems that both may
be, if not outright false, then at least too simplistic (Goddard 2001; Evans and Levinson 2009;
Haspelmath and Tadmor 2009b).

26The only exception is German.
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Figure 5.1: UPGMA clustering for Levenshtein distance scores

Figure 5.2: UPGMA clustering for Dice distance scores

other.

5.7 Conclusions and future work

We have presented preliminary experiments with different string similarity
measures over translation equivalents automatically extracted from a parallel
corpus for estimating the genetic distances among languages. The preliminary
results indicate that a parallel corpus could be used for this kind of study, al-
though because of the richer information that a parallel corpus provides, we
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Figure 5.3: UPGMA clustering for LCSR distance scores

will need to look into, e.g., how cognates and loanwords could be distin-
guished. This is an exciting area for future research.

In this study, only the lexical features of the parallel corpora have been
exploited, following the tradition of Swadesh list based language comparison.
However, using corpora we can move well beyond the lexical level, as corpora
can also be used for comparing other linguistic features. Consequently, we
plan to experiment with syntactic features such as POS tags for estimating
the similarity among languages. Not only the orthographic similarity but also
the co-occurrence context vectors for the words could be used to estimate the
similarity between translationally similar words.
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6 N-GRAM APPROACHES TO

THE HISTORICAL DYNAMICS

OF BASIC VOCABULARY

Rama, Taraka and Lars Borin 2013. N-Gram Approaches to the Historical Dy-
namics of Basic Vocabulary. Journal of Quantitative Linguistics 21 (1): 50–64.

Abstract

In this paper, we apply an information theoretic measure, self-entropy of phon-
eme n-gram distributions, for quantifying the amount of phonological varia-
tion in words for the same concepts across languages, thereby investigating
the stability of concepts in a standardized concept list – based on the 100-item
Swadesh list – specifically designed for automated language classification. Our
findings are consistent with those of the ASJP project (Automated Similarity
Judgment Program; Holman et al. 2008b). The correlation of our ranking with
that of ASJP is statistically highly significant. Our ranking also largely agrees
with two other reduced concept lists proposed in the literature. Our results
suggest that n-gram analysis works at least as well as other measures for inves-
tigating the relation of phonological similarity to geographical spread, auto-
matic language classification, and typological similarity, while being compu-
tationally considerably cheaper than the most widespread method (normalized
Levenshtein distance), very important when processing large quantities of lan-
guage data.

6.1 Introduction

There are some 7,000 languages in the world (Lewis, Simons and Fennig
2013). These can be grouped into 200–400 separate language families (Lewis,
Simons and Fennig 2013; Dryer 2011; Hammarström 2010). Hammarström
(2010: 198) defines a language family in this way (emphasis as in the original):
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– a set of languages (possibly a one-member set)
– with at least one sufficiently attested member language
– that has been demonstrated in publication
– to stem from a common ancestor
– by orthodox comparative methodology (Campbell and Poser 2008)
– for which there are no convincing published attempts to demonstrate a

wider affiliation.
This definition implies that the set of established language families may

change as research progresses, but also that there may be limits to what is
knowable about the history of languages. Sometimes we find statements in the
literature to the effect that a hypothesized wider affiliation is too remote to
be recoverable using the traditional comparative method (Campbell and Poser
2008: ch. 9–10).

However, only a very small minority of these language families are so well-
studied that there is fair consensus among experts about their internal genetic
subgrouping – the structure of their family tree – at least in general outline. For
the vast majority of the world’s languages, the work of confirming and sub-
grouping established families and of combining them into more encompassing
units is still very much on the wish-list of historical-comparative linguistics.

This is a vast undertaking, and to boot one pursuing a receding goal, since
the world’s languages are disappearing at an estimated rate of about one lan-
guage every two weeks (Krauss 1992), many of them without leaving behind
enough of a record so as to allow their genetic affiliations to be investigated in
any detail. Here, as in other fields of scientific enquiry, we would do well to ask
ourselves whether it would be possible to develop quantitative computational
tools that could help experts in this endeavor. One such tool is lexicostatistics,
first explicitly articulated about a half-century ago by the American linguist
Morris Swadesh in a series of oft-cited papers (Swadesh 1948, 1950, 1952,
1955).

At the time – almost before computers – lexicostatistics was designed as
a completely manual procedure. It relied on the manual calculation of degree
of overlap – the percentage of shared cognates27 – between short standardized
lists of central and universal senses, e.g., the so-called Swadesh lists contain-
ing on the order of 200 (Swadesh 1952) or 100 items (Swadesh 1955). In lex-
icostatistics as originally conceived, cognacy is always determined solely by
human expert judgment.

The degree of overlap can be trivially calculated automatically once we
have the information about which items are cognates and thus are to be counted

27In the terminology of historical linguistics, items (words, morphemes or constructions)
in related languages are cognates if they all descend directly from the same proto-language
item. This is sometimes called vertical transmission, as opposed to horizontal transmission, i.e.,
borrowing in a wide sense. Thus, cognacy in historical linguistics explicitly excludes loanwords.
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as the same. Hence, the time-consuming bottleneck in lexicostatistics is the
determination of cognacy, which requires considerable expertise and effort
even in the case of small language families (which is not where we would
expect to gain most from applying lexicostatistics in any case). Recently, some
researchers have for this reason turned to approaches more amenable to au-
tomation, hoping that large-scale automatic language classification will thus
become feasible.

It is important to stress at this point that such approaches are not intended
as an alternative to traditional historical-comparative linguistic methodology,
but rather as an addition to its toolbox. If these methods live up to expectations,
they will provide an initial screening and a good first approximation of possible
genetic relationships among large numbers of languages, some of which can
then be singled out for more thorough investigation by human experts. The
results of such investigations could then be brought back to inform and refine
the automated approaches.

In most of this work, explicit cognacy judgments are replaced by an auto-
matic calculation crucially relying on some form of (string) similarity measure,
based on the assumption that, on average, cognates will tend to be more similar
across languages than non-cognates. The outcome of the automated methods
can be tested by comparing the automatically calculated inter-language dis-
tances to accepted language family subgroupings arrived at by the traditional
comparative method, such as those provided in the Ethnologue (Lewis, Simons
and Fennig 2013) or the World Atlas of Language Structures (WALS; Haspel-
math et al. 2011).

In this paper, our aim is to investigate an alternative similarity measure,
phoneme n-gram distributions, in this context, comparing it to the currently
most popular measure, a variant of Levenshtein distance.

The rest of the paper is structured as follows. In the next section we give
some necessary background information and a brief account of relevant re-
lated work, including the design of the ASJP database, which we use in our
experiments. In the following sections, we describe and motivate the method
we propose for computing item stability across language families of the world,
and report on the results obtained through the application of the method, com-
paring them with earlier results reported in the literature. Finally, we discuss
the implications of our rankings and indicate directions for further research.
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6.2 Background and related work

6.2.1 Item stability and Swadesh list design

In historical linguistics, item stability is defined as the degree of resistance of
an item to lexical replacement over time, either by another lexical item from the
same language or by a borrowed lexical item. The item itself may either go out
of use and disappear from the language altogether, or acquire another meaning
(semantic change), i.e., move into another item slot. For example, Old English
dēor ‘animal’ > deer (compare the Swedish cognate djur ‘animal’, which has
not undergone this shift in meaning). The modern English word animal is a
borrowing from Old French.

The quest for a core vocabulary (list of central lexical items; see Borin
2012 for a detailed discussion of some linguistic and computational linguistic
aspects of core vocabularies) for language classification and dating of language
divergence has been going on since the beginning of lexicostatistics (Swadesh
1948, 1950, 1952, 1955). The initial list of 215 items, originally presented
by Swadesh in 1952, was reduced to a 100 item list in 1955. The items in
the Swadesh lists supposedly represent senses universally present in human
languages, and represented by words maximally resistant to lexical replace-
ment. Unfortunately, the Swadesh lists were established mainly on the basis of
Swadesh’s own intuition and (considerable) professional linguistic experience,
and were thus naturally limited in terms of the number of languages that could
be taken into account.

Oswalt (1971) later attempted to provide more exact criteria for including a
concept in the Swadesh list: (1) The cognate set28 for the item should account
for as many languages as possible. In other words, the number of cognate sets
for an item should be as small as possible. (2) Cognates found in far removed
languages are a stronger indicator of stability than those found in closely re-
lated languages.29

Together with the observation that cognates tend to be phonologically more
similar than non-cognates – at least in the kind of vocabulary covered by the
Swadesh lists – this opens the possibility to use (automatic) string similarity
measures as proxies for (manual) cognacy judgments, thereby allowing us to
test item stability on a large scale in order to investigate more objectively how

28The term cognate set refers to a set of cognate items, i.e., words in different languages going
back to the same proto-language word. In working with Swadesh lists, cognates are further
required to express the same sense in order for them to be in the same cognate set.

29Compare English wheel to Hindi chakka ‘wheel’, which do not reveal themselves to be
cognates through visual inspection, but can nevertheless be traced back to the same Proto-Indo-
European root.
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well-founded Swadesh’s intuitions were. To this end, Holman et al. (2008a) de-
fined a measure – based on the phonological matches (measured using LDND;
see below) between words for a single item in closely related languages (as
defined in terms of WALS genera of a family; see Dryer 2011) – to rank items
in a 100-item Swadesh list as to their stability and to evaluate the effect of
the word-list size on automatic language classification by comparing the auto-
matically computed inter-language distances to the genetic classification given
in the WALS (Haspelmath et al. 2011) and Ethnologue (Lewis, Simons and
Fennig 2013). They found that the list could be pared down to a 40-item most-
stable subset without impairing the classification significantly. The resulting
stability ranking of the Swadesh list items will be used in our experiment de-
scribed below.

At least two recent exhaustive evaluations in automatic language classifi-
cation, by Pompei, Loreto and Tria (2011) and Wichmann et al. (2011a), vin-
dicate the use of 40-item lists across the world’s language families. In both
cases, a tree building algorithm (Neighbour Joining; Saitou and Nei 1987) was
applied to the LDND distance matrices and the resulting trees were compared
with two expert classifications (Lewis 2009; Hammarström 2010) using three
different tree comparison measures, in all cases showing high agreement with
the expert classifications.

6.2.2 The ASJP database

The ASJP (Automated Similarity Judgment Program) project30 (Brown et al.
2008), comprises a group of scholars who have embarked on an ambitious pro-
gram of automating the computation of similarities between languages using
lexical similarity measures. The ASJP database covers a very large number of
languages (more than half the world’s languages in the version of the database
used in the present paper). For each language present in the database, it con-
tains a short phonetically transcribed word list based on the 100-item Swadesh
list. For most of the languages this has been reduced down to the most stable
40 items, according to the empirical findings of Holman et al. 2008a, described
above.

These concepts are supposed to be highly stable dischronically and there-
fore useful for estimating inter-language genetic distances. The ASJP program
computes the distance between two languages as the average pair-wise length-
normalized Levenshtein distance (Levenshtein 1966), called Levenshtein Dis-
tance Normalized (LDN). LDN is further modified to compensate for chance
resemblance such as accidental phoneme inventory similarity between a pair

30http://email.eva.mpg.de/∼wichmann/ASJPHomePage.htm
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of languages to yield LDND (Levenshtein Distance Normalized Divided; Hol-
man et al. 2008b).

The ASJP effort began with a small dataset of 100-item lists for 245 lan-
guages. Since then, the ASJP database has been continually expanded, to in-
clude in its latest version (v. 14) more than 5,500 word lists representing well
over one half of the languages of the world (Wichmann et al. 2011b). As men-
tioned above, most of the added word lists have aimed to cover only the 40-
item most stable Swadesh subset identified by Holman et al. (2008a), and not
the full 100-item list.

Each lexical item in an ASJP word list is transcribed in a broad phonetic
transcription known as ASJP Code (Brown et al. 2008). The ASJP code con-
sists of 34 consonant symbols, 7 vowels, and four modifiers, all rendered by
characters available on the English version of the QWERTY keyboard. Tone,
stress and vowel length are ignored in this format. The three modifiers combine
symbols to form phonologically complex segments (e.g., aspirated, glottalized,
or nasalized segments).

6.2.3 Earlier n-gram-based approaches

In quantitative approaches to historical linguistics, there are at least two ear-
lier lines of work where character n-grams have been used for computing the
pair-wise distances between languages, in both cases based on multilingual
corpora rather than Swadesh-type word lists. Huffman (1998) compute pair-
wise language distances based on character n-grams extracted from Bible texts
in European and indigenous American languages (mostly from the Mayan lan-
guage family). Singh and Surana (2007) use character n-grams extracted from
raw comparable corpora of ten languages from the Indian subcontinent for
computing the pair-wise language distances between languages belonging to
two different language families (Indo-Aryan and Dravidian). Rama and Singh
(2009) introduce a factored language model based on articulatory features to
induce a articulatory feature level n-gram model from the dataset of Singh and
Surana 2007. The feature n-grams of each language pair are compared using
distributional similarity measures such as cross-entropy to yield a single point
distance between a language pair.

Being based on extensive naturalistic corpus data, these studies have the
considerable positive aspect of empirical well-groundedness. On the negative
side, except for the study of Rama and Singh 2009, the real object of compar-
ison – the phonology of the languages – is accessed only indirectly, through
their standard orthographies, which differ in various ways, potentially distort-
ing the cross-linguistic comparison. Another shortcoming of using corpora for
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large-scale cross-linguistic investigations stems from the fact that only a small
minority of the world’s languages have an established written form (Borin
2009), and initiatives such as the “universal corpus of the world’s languages”
of Abney and Bird 2010, although of course infinitely laudable, are still a very
long way from their realization.

6.3 Method

The work presented here considers a different approach from that of ASJP to
investigate the individual relationship of phonological similarity with item sta-
bility. The approach in this paper is inspired by the work of Cavnar and Trenkle
1994, who use character n-grams for text categorization, based on their obser-
vation that the n-grams for a particular document category follow a Zipfian dis-
tribution. The rank of a character n-gram varies across documents belonging
to different languages, topics and genres. Building upon this work, Dunning
(1994) motivates the use of these character n-grams for automatic language
identification and the computation of inter-language distances as well as dis-
tances between dialects.

Our motivation for conducting the present investigation has been twofold:
(1) There is a general lack of comparative studies in this area, and we thus
aim to contribute to the general methodological development of the field; and
(2) complexity-wise, an n-gram-based similarity calculation is much more ef-
fective than LDND (linear vs. quadratic in the length of the input strings), and
hence will scale up to much larger datasets, should the need for this arise (e.g.,
for comparing corpus data or full-sized dictionaries, rather than the short word
lists used here).

For reasons given above, we depart from earlier n-gram-based approaches
in that we do not use corpus data. Instead, we take advantage of the fact that
the ASJP database offers an attractive alternative to corpora as the basis for
massive cross-linguistic investigations. Wichmann, Rama and Holman (2011)
show that the phoneme inventory sizes of 458 of the world’s languages (Mad-
dieson and Precoda 1990) have a robust correlation (r = 0.61) with the number
of 1-grams (supposed phonemes) extracted from the word lists for the corre-
sponding languages in the ASJP database. Given this result, it is reasonable
to assume that the phoneme n-grams extracted from the ASJP database give a
fair picture of the phonology of the languages and consequently can be used
for investigating item stability directly on the phonetic level.

All the experiments reported in this paper were performed on a subset of
version 12 of the ASJP database.31 The database contains a total of 4,169 word

31Available on http://email.eva.mpg.de/~wichmann/listss12.zip.
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lists, including not only living languages, but also extinct ones. The database
also contains word lists for pidgins, creoles, mixed languages, artificial lan-
guages, and proto-languages, all of which have been excluded from the cur-
rent study. Among the extinct languages, only those languages were included
which have gone extinct less than three centuries ago. One might argue that
phonotactic (and phonological) similarity could result from borrowing, chance
or genetic affinity. We address the concern of borrowing by removing all iden-
tified borrowings from our word lists. Also, any word list containing less than
28 words (70% of the 40-item set) was not included in the final dataset. We
use the family names of the WALS (Haspelmath et al. 2011) classification.
Following Wichmann et al. 2010a, any family with less than ten languages is
excluded from our experiments, as is any family established (only) through
basic vocabulary comparison, the latter in order to avoid circularity.

Language FamilyMacro-area NOL Language FamilyMacro-area NOL
Afro-AsiaticAfr 9 Na-DeneNAm 2
AlgicNAm 2 Niger-CongoAfr 4
AltaicEur 2 Nilo-SaharanAfr 2
Australian 3 Otto-MangueanNAm 2
Austro-AsiaticSEAO 17 QuechuanSAm 1
AustronesianSEAO 41 Sino-TibetanEur 4
DravidianEur 3 Tai-KadaiSEAO 1
Indo-EuropeanEur 10 Trans-New Guinea 6
Macro-GeSAm 3 TucanoanSAm 2
MayanNAm 43 TupianSAm 3
Mixe-ZoqueanNAm 10 UralicEur 3
Uto-AztecanNAm 3

Table 6.1: The geographical macro-area (Haspelmath et al. 2011) of each family is
indicated in superscript after the family. Afr: Africa; NAm: North Amer-
ica; Eur: Eurasia; SAm: South America; SEAO: South East Asia and
Oceania. The rest of the language families belong to Australia-Trans New
Guinea. The abbreviation for each language family is provided in brack-
ets. NOL represents the number of languages in a family.

The experiments were conducted on a dataset: corresponding to that used
by Holman et al. (2008a), i.e., containing languages for which 100-item lists
are available. The final dataset contains word lists for 190 languages belonging
to the 30 language families listed in table 6.1.

With our proposed similarity measure, a phoneme n-gram profile derived
from a set of similar words will contain fewer n-grams than one derived from a
set of dissimilar words. An information-theoretic measure such as self-entropy
can then be used to quantify the amount of phonological variation in a phoneme
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n-gram profile, e.g., for a Swadesh-list item across a language family. Our
hypothesis is that this measure will work analogously to the LDND distance
measure, and be a good, computationally cheaper substitute for it.

The phoneme n-gram profile for a language family is computed in the fol-
lowing manner. A phoneme n-gram is defined as the consecutive phoneme
segments in a window of a fixed length n. The value of n ranges from one to
five. All the phoneme 1-grams to 5-grams are extracted for a lexical item in
an item list. All n-grams for an item, extracted from word-lists belonging to a
family, are merged, counted and sorted in order of descending frequency. This
list constitutes the n-gram profile for the item. In the next step, the relative
frequency of each n-gram in an n-gram profile for an item is computed by nor-
malizing the frequency of a phoneme n-gram by the sum of the frequencies of
all the n-grams in an item’s n-gram profile. This corresponds roughly to the
length normalization step in the calculation of LDND. It can be summarized
as in (4), where f i

ngram denotes the frequency of the ith n-gram and S denotes
the size of the n-gram profile for an item.

r f i
ngram =

f i
ngram

∑
S
i=1 f i

ngram
(4)

Given this background, the self-entropy of the kth item’s n-gram profile can
defined as in (5):

Hk
item =−

S

∑
i=1

r f i
ngram · log(r f i

ngram) (5)

The self-entropy H(·) is further scaled by raising it to the power of e to
provide better resolution. Since self-entropy H(·) measures the amount of di-
vergence in the phoneme n-gram profile for an item, the items can be ranked
relatively in terms of the ascending order of self-entropy averaged (weighted
by the size of the family32) across the families.

6.4 Results and discussion

Table 6.2 shows the 100 items ranked in decreasing order of stability, as indi-
cated by the phoneme n-grams method. A Spearman’s rank correlation ρ be-
tween the ranks given in table 6.2 and the ranks given by Holman et al. (2008a)

32We use weighted average to factor out the effect of sample size of each language family.
We tried averaging using the number of families and total number of languages present in the
100-word list sample. Both the averaging techniques correlate highly (ρ > 0.92, p < 0.001)
with the weighted average.
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(listed in column H08 of table 6.2) is 0.63 (p < 0.001). The correlation is quite
robust and highly significant. This correlation suggests that the n-gram-based
ranking of the 100-item list is highly similar to the ASJP ranking based on
LDND.

The ASJP 40-item list (actually 43, since the Swadesh list senses ‘rain’,
‘bark’ and ‘kill’ are instantiated with the same lexical items as ‘water’, ‘skin’
and ‘die’ in many languages; hence, the reduced ASJP list covers ranks down
to 43) has 35 items in common with the n-gram method. One simple way to
test if the intersection is by chance is to run a 1000-trial simulation by selecting
two random samples of 43 items from a 100-item list and counting the number
of times that both the samples have items in common. Such a test showed that
the result is significant.

This agreement of our rankings with that of ASJP puts us on a strong foot-
ing for the enterprise of automated language classification, as it implies that a
similarity measure based on phoneme n-grams is a good alternative to LDND.

There are at least two shorter lists – of length 35 and 23 – proposed by
Starostin (1991), attributed to Yakhontov, and Dolgopolsky (1986), both spe-
cially designed for identifying relationships between remote languages and
looking past the time-depth ceiling imposed by the traditional comparative
method (Kessler 2008; Campbell and Mixco 2007), and consequently aspiring
to identify maximally stable items across languages.33 The 100-item Swadesh
list lacks three items, ‘nail’, ‘tear/drop’ and ‘salt’, present in Dolgopolsky’s
23-item list. Our 40-item list has 17 items in common with the 23-item list.
Yakhontov’s 35-word list contains the items ‘salt’, ‘wind’, ‘year’ which are
not present in Swadesh’s 100-item list, but are in the 200-item list. Our 40-item
list has 24 items in common with Yakhontov’s list. We conclude our compari-
son with the shorter word-lists by noting that our method places ‘this’, ‘who’,
‘what’ and ‘give’ among the top 43, present in Yakhontov’s list whereas, ASJP
places them after 43. The items ‘not’ and ‘who’ appear in the 23-item list of
Dolgopolsky but do not appear in the ASJP 40-item list.

Rank H08 #/Item Stability Rank H08 #/Item Stability
1 6 *1/ID,Y 101.953 51 20 *44/tongueD,Y 325. 452
2 1 *22/louseD,Y 111.647 52 96 49/belly 331. 196
3 11 *23/tree 153.598 53 41 *96/newY 346. 665
4 8 *40/eyeD,Y 157.787 54 89 65/walk 348. 355
5 16 *51/breasts 166.545 55 70 37/hair 349. 821
6 38 *54/drink 169.873 56 54 79/earth 351. 177
7 5 *61/dieD,Y 175.367 57 86 35/tailY 358. 716
8 43 *72/sunD,Y 177.999 58 32 *95/fullD,Y 359. 211
9 47 70/giveY 178.558 59 28 *18/person 372. 306
10 27 *34/hornD,Y 184.285 60 64 83/ash 373. 392

33Dolgopolsky (1986) arrived at the 23-item list by comparing 140 languages belonging to
ten families.
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11 2 *12/twoD,Y 204.345 61 53 38/head 375. 332
12 73 4/thisY 211.777 62 80 17/man 380. 891
13 40 27/bark 216.259 63 85 84/burn 384. 256
14 33 *66/come 217.405 64 15 *43/toothD,Y 385. 485
15 3 *75/waterD,Y 219.858 65 82 29/flesh 387. 652
16 13 *100/nameD,Y 222.516 66 91 10/many 390. 966
17 66 55/eat 223.821 67 79 97/good 398. 742
18 30 *11/oneY 225.599 68 83 50/neck 399. 049
19 12 *19/fishY 227.537 69 98 93/hot 400. 909
20 17 *2/youD,Y 230. 4 70 45 32/grease 406. 988
21 68 6/whoD,Y 236.126 71 95 63/swim 408. 921
22 9 *48/handD,Y 236.955 72 63 56/bite 411. 407
23 35 *86/mountain 250.578 73 84 71/say 412. 343
24 4 *39/earD,Y 259.692 74 67 33/eggY 415. 863
25 42 *21/dogY 263.383 75 75 16/woman 418. 379
26 24 76/rain 264.581 76 10 *58/hear 421. 242
27 36 *82/fireY 265.697 77 59 60/sleep 438. 326
28 14 *77/stoneY 268.448 78 44 64/fly 440. 443
29 26 *30/bloodD,Y 268.841 79 25 62/kill 447. 78
30 37 *3/we 270.771 80 78 69/stand 456. 98
31 21 *28/skin 271.754 81 50 90/white 461. 035
32 31 *41/noseY 275.397 82 22 *92/nightD 464. 536
33 18 *85/path 281.417 83 97 13/big 467. 197
34 88 5/that 281.823 84 61 26/root 485. 709
35 29 *47/knee 283.865 85 65 87/red 490. 751
36 7 *53/liver 289.086 86 94 80/cloud 493. 499
37 74 24/seed 291. 34 87 51 89/yellow 496. 966
38 19 *31/boneY 291.445 88 69 99/dry 499. 142
39 39 *57/see 293. 99 89 77 14/long 500. 151
40 55 46/foot 295.059 90 58 88/green 522. 136
41 60 7/whatY 295.904 91 76 98/round 525. 012
42 72 8/notD 297.628 92 87 78/sand 527. 829
43 23 *25/leaf 297.915 93 93 59/knowY 527. 866
44 46 73/moonY 308.394 94 34 *74/star 558. 447
45 52 20/bird 314.281 95 100 15/small 597. 591
46 49 36/feather 315.486 96 81 94/cold 598. 111
47 57 42/mouth 318.221 97 56 91/black 602. 131
48 71 81/smoke 318.681 98 99 67/lie 619. 404
49 48 52/heartD 320.086 99 90 68/sit 620. 247
50 62 45/claw 323.965 100 92 9/all 679. 997

Table 6.2: The items are presented in the ranking given by the n-grams (Rank).
The second column (H08) provides the corresponding ranking of Holman
et al. (2008a). The Swadesh list number/item is found in the third column,
where the * symbol denotes an item present in the reduced 40-item ASJP
list. Superscripts D and Y indicate membership in the lists of Dolgopol-
sky (1986) and Starostin (1991: attributed by Starostin to Yakhontov),
respectively.

6.5 Conclusions

In summary, the item stability ranks derived from n-gram analysis largely agree
with the item stability ranks based on phonological matches found by Holman
et al. (2008a) using LDND as the similarity measure. This result suggests that
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phoneme n-grams work at least as well as other string similarity measures –
e.g., LDND – for investigating the relation of phonological similarity to ge-
ographical spread, automatic language classification, and typological similar-
ity. At the same time, n-gram analysis is cheaper in terms of computational
resources – the fundamental comparison step has linear complexity, against
quadratic complexity for LDND – which is important when processing large
quantities of language data.34

A topic in need of future research is a continuation of the methodological
strand of the work presented here, in the form of a more encompassing com-
parison of different string similarity measures for automated lexicostatistics.
There is also the general issue of whether the “classical” Swadesh lists are the
optimal point of departure for identifying the most stable lexical items across
the languages of the world, as has been (tacitly or explicitly) assumed in most
previous work (with Dolgopolsky 1986 forming a notable exception in this
regard; see also Borin 2012 for a more in-depth discussion of this issue), or
whether even more stable items could be found by looking at the matter with
fresh eyes, perhaps using text corpora.

34The LDND program takes about one hour to compute the inter-language distances whereas,
the n-gram analysis takes less than two minutes.
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AND LANGUAGE

CLASSIFICATION

Rama, Taraka and Prasanth Kolachina 2012. How good are typological dis-
tances for determining genealogical relationships among languages? COLING
(posters), 975–984.

Abstract

The recent availability of typological databases such as World Atlas of Lan-
guage Structures (WALS) has spurred investigations regarding its utility for
classifying the world’s languages, the stability of typological features in ge-
netic linguistics and typological universals across the language families of the
world. In this paper, we compare typological distances, derived from fifteen
vector similarity measures, with family internal classifications and also lexi-
cal divergence. These results are only a first step towards the use of WALS
database in the projection of NLP resources and bootstrapping NLP tools for
typologically or genetically similar, yet resource-poor languages.

7.1 Introduction

There are more than 7000 languages in this world (Lewis 2009), which fall
into more than 140 genetic families having descended from a common ances-
tor. The aim of traditional historical linguistics is to trace the evolutionary path,
a tree of extant languages to their extinct common ancestor. Genealogical rela-
tionship is not the only characteristic which relates languages; languages can
also share structurally common features such as word order, similar phoneme
inventory size and morphology. For instance, Finnish and Telugu, which are
geographically remote and yet have a agglutinative morphology. It would be
a grave error to posit that two languages are genetically related due to a sin-
gle common structural feature. There have been attempts in the past (Nichols
1995) to rank the stability of structural features. Stability implies the resistance
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of a structural feature to change across space and time. For instance, Dravid-
ian languages have adhered to subject-object-verb (SOV) word order for the
last two thousand years (Krishnamurti 2003; Dunn, Levinson and Lindström
2008). Hence, it can be claimed that the structural feature SOV is very stable
in Dravidian language family. Also, structural features have recently been used
for inferring the evolutionary tree of a small group of Papuan languages of the
Pacific (Dunn et al. 2005).

In the area of computational linguistics, genealogical distances between
two language families have been shown to be useful for predicting the diffi-
culty of machine translation (Birch, Osborne and Koehn 2008). However, the
use of typological distances in the development of various NLP tools largely
remains unexplored. Typologically similar languages provide useful leverage
when working with low-resource languages. In this paper, we compare typo-
logical distances with family internal classification and also within-family lex-
ical divergence.

The paper is structured as followed. In section 7.2, we summarize the re-
lated work. Section 7.3 lists the contributions of this work. Section 7.4 de-
scribes the typological database, lexical database and the criteria for preparing
the final dataset. Section 7.5 presents the different vector similarity measures
and the evaluation procedure. The results of our experiments are given in Sec-
tion 7.6. We conclude the paper and discuss the future directions in Section
7.7.

7.2 Related Work

Dunn et al. (2005) were the first to apply a well-tested computational phy-
logenetic method (from computational biology), Maximum Parsimony (MP;
Felsenstein 2004) to typological features (phonological, syntactic and mor-
phological). The authors used MP to classify a set of unrelated languages – in
Oceania – belonging to two different families. In another related work, Wich-
mann and Saunders (2007) apply three different phylogenetic algorithms –
Neighbor Joining (Saitou and Nei 1987), MP and Bayesian inference (Ron-
quist and Huelsenbeck 2003) – to the typological features (from WALS) of 63
native American languages. They also ranked the typological features in terms
of stability. Nichols and Warnow (2008) survey the use of typological features
for language classification in computational historical linguistics. In a novel
work, Bakker et al. (2009) combine typological distances with lexical similar-
ity to boost the language classification accuracy. As a first step, they compute
the pair-wise typological distances for 355 languages, obtained through the
application of length normalized Hamming distance to 85 typological features



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 93 — #107 i
i

i
i

i
i

7.2 Related Work 93

(ranked by Wichmann and Holman 2009b). They combine the typological dis-
tances with lexical divergence, derived from lexicostatistical lists, to boost lan-
guage classification accuracy. Unfortunately, these works seem to have gone
unnoticed in computational linguistics.

Typological feature such as phoneme inventory size (extracted from WALS
database; Haspelmath et al. 2011) was used by Atkinson (2011) to claim that
the phoneme inventory size shows a negative correlation as one moves away
from Africa.35 In another work, Dunn et al. (2011) make an effort towards
demonstrating that there are lineage specific trends in the word order universals
across the families of the world.

In computational linguistics, Daume III (2009) and Georgi, Xia and Lewis
(2010) use typological features from WALS for investigating relation between
phylogenetic groups and feature stability. Georgi, Xia and Lewis (2010) moti-
vate the use of typological features for projecting linguistic resources such as
treebanks and bootstrapping NLP tools from “resource-rich” to “low-resource”
languages which are genetically unrelated yet, share similar syntactic features
due to contact (ex., Swedish to Finnish or vice-versa). Georgi, Xia and Lewis
(2010) compute pair-wise distances from typological feature vectors using co-
sine similarity and a shared overlap measure (ratio of number of shared fea-
tures to the total number of features, between a pair of feature vectors). They
apply three different clustering algorithms – k-means, partitional, agglomera-
tive – to the WALS dataset with number of clusters as testing parameter and
observe that the clustering performance measure (in terms of F-score) is not the
best when the number of clusters agree with the exact number of families (121)
in the whole-world dataset. They find that the simplest clustering algorithm, k-
means, wins across all the three datasets. However, the authors do not correct
for geographical bias in the dataset. Georgi, Xia and Lewis (2010) work with
three subsets of WALS database (after applying a pruning procedure described
in section 9.4). The first subset consists of 735 languages across the world.
Both the second and third dataset are subsets of the first subset and consist
of languages belonging to Indo-European and Sino-Tibetan language families.
They divide their dataset into 10-folds and train the three clustering algorithms
on 90% of the data to predict the remaining 10% of the features. Finally, the
features are ranked in the decreasing order of their prediction accuracy to yield
a stability ranking of the features.

35Assuming a monogenesis hypothesis of language similar to the monogenesis hypothesis of
homo sapiens.
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7.3 Contributions

In this article, we depart from Georgi, Xia and Lewis (2010) by not investigat-
ing the much researched topics of feature stability and the feature prediction
accuracy of clustering measures. Rather, we try to answer the following ques-
tions:
• Do we really need a clustering algorithm to measure the internal classifi-

cation accuracy of a language family? Internal classification accuracy is
a measure of closeness of the typological distances to the internal struc-
ture of a language family.
• How well do the typological distances within a family correlate with

the lexical distances derived from lexicostatistical lists (Swadesh 1952;
Wichmann et al. 2011b), originally proposed for language classification?
• Given that there are more than dozen vector similarity measures, which

vector similarity measure is the best for the above mentioned tasks?

7.4 Database

In this section, we describe WALS and Automated Similarity Judgment Pro-
gram (ASJP), the two databases used in our experiments.

7.4.1 WALS

The WALS database36 has 144 feature types for 2676 languages distributed
across the globe. As noted by Hammarström (2009), the WALS database is
sparse across many language families of the world and the dataset needs prun-
ing before it is used for further investigations. The database is represented as
matrix of languages vs. features. The pruning of the dataset has to be done in
both the directions to avoid sparsity when computing the pair-wise distances
between languages. Following Georgi, Xia and Lewis 2010, we remove all the
languages which have less than 25 attested features. We also remove features
with less than 10% attestations. This leaves the dataset with 1159 languages
and 193 features. Our dataset includes only those families having more than
10 languages (following Wichmann et al. 2010a), shown in table 7.1. Georgi,
Xia and Lewis (2010) work with a pruned dataset of 735 languages and two
major families Indo-European and Sino-Tibetan whereas, we stick to inves-
tigating the questions in section 7.3 for the well-defined language families –
Austronesian, Afro-Asiatic – given in table 7.1.

36Accessed on 2011-09-22.
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Family Count Family Count
Austronesian 150 (141) Austro-Asiatic 22 (21)
Niger-Congo 143 (123) Oto-Manguean 18 (14)
Sino-Tibetan 81 (68) Arawakan 17 (17)
Australian 73 (65) Uralic 15 (12)
Nilo-Saharan 69 (62) Penutian 14 (11)
Afro-Asiatic 68 (57) Nakh-Daghestanian 13 (13)
Indo-European 60 (56) Tupian 13 (12)
Trans-New Guinea 43 (33) Hokan 12 (12)
Uto-Aztecan 28 (26) Dravidian 10 (9)
Altaic 27 (26) Mayan 10 (7)

Table 7.1: Number of languages in each family. The number in parenthesis for each
family gives the number of languages present in the database after map-
ping with ASJP database.

7.4.2 ASJP

A international consortium of scholars (calling themselves ASJP; Brown et al.
2008) started collecting Swadesh word lists (Swadesh 1952) (a short concept
meaning list usually ranging from 40–200) for most of the world’s languages
(more than 58%), in the hope of automatizing the language classification of
world’s languages.37 The ASJP lexical items are transcribed using a broad
phonetic transcription called ASJP Code (Brown et al. 2008). The ASJP Code
collapses distinctions in vowel length, stress, tone and reduces all click sounds
to a single click symbol. This database has word lists for a language (given
by its unique ISO 693-3 code as well as WALS code) and its dialects. We use
the WALS code to map the languages in WALS database with that of ASJP
database. Whenever a language with a WALS code has more than one word
list in ASJP database, we chose to retain the first language for our experi-
ments. An excerpt of word list for Russian is shown in table 7.2. The first line
consists of name of language, WALS classification (Indo-European family and
Slavic genus), followed by Ethnologue classification (informing that Russian
belongs to Eastern Slavic subgroup of Indo-European family). The second line
consists of the latitude, longitude, number of speakers, WALS code and ISO
693-3 code. Lexical items begin from the third line.

7.4.3 Binarization

Each feature in the WALS dataset is either a binary feature (presence or ab-
sence of the feature in a language) or a multi-valued feature, coded as a dis-

37Available at: http://email.eva.mpg.de/~wichmann/listss14.zip
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RUSSIAN{IE.SLAVIC|Indo-European,Slavic,East@Indo-
European,Slavic,EastSlavic}
1 56.00 38.00 143553950 rus rus
1 I ya
2 you t3, v3
3 we m3
4 this iEt3
5 that to
6 who kto
7 what tato
8 not ny~E
9 all fsy~e
10 many imnogy~i

Table 7.2: 10 lexical items in Russian.

crete integers over a finite range. Georgi, Xia and Lewis (2010) binarize the
feature values by recording the presence or absence of a feature value in a lan-
guage. This binarization greatly expands the length of the feature vector for
a language but allows to represent a wide-ranged feature such as word order
(which has 7 feature values) in terms of a sequence of 1’s and 0’s. The issue of
binary vs. multi-valued features has been a point of debate in genetic linguis-
tics and has been shown to not give very different results for the Indo-European
classification (Atkinson and Gray 2006).

7.5 Measures

In this section, we discuss the two measures for evaluating the vector similar-
ity measures in terms of internal classification and the computation of lexical
distances for ASJP word lists. In this section, we present the 15 vector sim-
ilarity measures (shown in table 7.3) followed by the evaluation measure for
comparing typological distances to WALS classification. Next, we present the
ASJP lexical divergence computation procedure.

Vector similarity measures

7.5.1 Internal classification accuracy

Apart from typological information for the world’s languages, WALS also pro-
vides a two-level classification of a language family. In the WALS classifica-
tion, the top level is the family name, the next level is genus and a language
rests at the bottom. For instance, Indo-European family has 10 genera. Genus is
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Vector similarity
euclidean 2

√
Σn

i=1(v
i
1− vi

2)
2

seuclidean Σn
i=1(v

i
1− vi

2)
2

nseuclidean
‖σ1−σ2‖

2∗‖σ1‖+‖σ2‖
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chessboard max((vi

1− vi
2)∀i ∈ (1,n))

braycurtis
Σn

i=1|vi
1− vi
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Σn

i=1|vi
1 + vi

2|
cosine

v1 · v2

‖v1‖∗‖v2‖
correlation 1− σ1 ·σ2

‖σ1‖∗‖σ2‖

Boolean similarity
hamming #6=0(v1 ˆ v2)

jaccard
#6=0(v1 ˆ v2)

# 6=0(v1 ˆ v2)+#6=0(v1&v2)

tanimoto
2∗# 6=0(v1 ˆ v2)

#6=0(v1&v2)+#=0(v1|v2)+2∗# 6=0(v1 ˆ v2)

matching
#6=0(v1 ˆ v2)

#v1

dice
#6=0(v1 ˆ v2)

#6=0(v1 ˆ v2)+2∗# 6=0(v1&v2)

sokalsneath
2∗# 6=0(v1 ˆ v2)

2∗#6=0(v1 ˆ v2)+# 6=0(v1&v2)

russellrao
#6=0(v1 ˆ v2)+#=0(v1|v2)

#v1

yule
2∗# 6=0(v1− v2)∗#=0(v1− v2)

# 6=0(v1− v2)∗#=0(v1− v2)+#6=0(v1&v2)∗#=0(v1|v2)

Table 7.3: Different vector similarity measures used in our experiments (distance
computed between v1 and v2). In vector similarity measures, ‖‖ represents
the L2 norm of the vector, and σ represents the difference from mean of
vector (µ1) i.e. (v1−µ1). Similarly, for the boolean similarity measures,
ˆ stands for the logical XOR operation between bit vectors while & and |
stand for logical AND and OR operations respectively. #6=0 (·) stands for
number of non-zero bits in a boolean vector.
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a consensually defined unit and not a rigorously established genealogical unit
(Hammarström 2009). Rather, a genus corresponds to a group of languages
which are supposed to have descended from a proto-language which is about
3500 to 4000 years old. For instance, WALS lists Indic and Iranian languages
as separate genera whereas, both the genera are actually descendants of Proto-
Indo-Iranian which in turn descended from Proto-Indo-European – a fact well-
known in historical linguistics (Campbell and Poser 2008).

The WALS classification for each language family listed in table 7.1, can
be represented as a 2D-matrix with languages along both rows and columns.
Each cell of such a matrix represents the WALS relationship in a language pair
in the family. A cell has 0 if a language pair belong to the same genus and 1 if
they belong to different genera. The pair-wise distance matrix obtained from
each vector similarity measure is compared to the 2D-matrix using a special
case of pearson’s r, called point-biserial correlation (Tate 1954).

7.5.2 Lexical distance

The ASJP program computes the distance between two languages as the aver-
age pair-wise length-normalized Levenshtein distance, called Levenshtein Dis-
tance Normalized (LDN) (Levenshtein 1966). LDN is further modified to ac-
count for chance resemblance such as accidental phoneme inventory similarity
between a pair of languages to yield LDND (Levenshtein Distance Normalized
Divided; Holman et al. 2008b). The performance of LDND distance matrices
was evaluated against two expert classifications of world’s languages in at least
two recent works (Pompei, Loreto and Tria 2011; Wichmann et al. 2011a).
Their findings confirm that the LDND matrices largely agree with the classi-
fication given by historical linguists. This result puts us on a strong ground to
use ASJP’s LDND as a measure of lexical divergence within a family.

The distribution of the languages included in this study is plotted in figure
7.1.

The correlation between typological distances and lexical distances is (with-
in a family) computed as the Spearman’s rank correlation ρ between the typo-
logical and lexical distances for all language pairs in the family. It is worth
noting that Bakker et al. (2009) also compare LDND distance matrices with
WALS distance matrices for 355 languages from various families using a pear-
son’s r whereas, we compare within-family LDND matrices with WALS dis-
tance matrices derived from 15 similarity measures.
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Figure 7.1: Visual representation of world’s languages in the final dataset.

7.6 Results

In this section, we present and discuss the results of our experiments in internal
classification and correlation with lexical divergence. We use heat maps to
visualize the correlation matrices resulting from both experiments.

7.6.1 Internal classification

The point bi-serial correlation, r, introduced in section 7.5, lies in the range
of −1 to +1. The value of r is blank for Arawakan and Mayan families since
both families have a single genus in their respective WALS classifications.
Subsequently, r is shown in white for both of these families. Chessboard mea-
sure is blank across all language families since chessboard gives a single score
of 1 between two binary vectors. Interestingly, all vector similarity measures
perform well for Australian, Austro-Asiatic, Indo-European and, Sino-Tibetan
language families, except for ‘russellrao’. We take this result as quite encour-
aging, since they consist of more than 33% of the total languages in the sample
given in table 7.1. Among the measures, ‘matching’, ‘seuclidean’, ‘tanimoto’,
‘euclidean’, ‘hamming’ and ‘manhattan’ perform the best across the four fam-
ilies. Interestingly, the widely used ‘cosine’ measure does not perform as well
as ‘hamming’. None of the vector similarity measures seem to perform well
for Austronesian and Niger-Congo families which have more than 14% and
11% of the world’s languages respectively. The worst performing language
family is Tupian. This does not come as a surprise, since Tupian has 5 genera
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with one language in each and a single genus comprising the rest of family.
Australian and Austro-Asiatic families shows the maximum correlation across
‘seuclidean’, ‘tanimoto’, ‘euclidean’, ‘hamming’ and ‘manhattan’.

Figure 7.2: Heatmap showing the gradience of r across different language families
and vector similarity measures.

7.6.2 Lexical divergence

The rank correlation between LDND and vector similarity measures is high
across Australian, Sino-Tibetan, Uralic, Indo-European and Niger-Congo fam-
ilies. The ‘Russel-Rao’ measure works the best for families – Arawakan, Aust-
ro-Asiatic, Tupian, and Afro-Asiatic – which otherwise have poor correlation
scores for the rest of measures. The maximum correlation is for ‘yule’ measure
in Uralic family. Indo-European, the well-studied family, shows a correlation
from 0.08 to the maximum possible correlation across all measures, except for
‘Russell-Rao’ and ‘Bray-Curtis’ distances. It is not clear why Hokan family
shows the lowest amount of correlation across all the families.
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Figure 7.3: Heatmap showing the gradience of ρ across different families and vector
similarity measures.

7.7 Conclusion

In summary, choosing the right vector similarity measure when calculating ty-
pological distances makes a difference in the internal classification accuracy.
The choice of similarity measure does not influence the correlation between
WALS distances and LDND distances within a family. The internal classifi-
cation accuracies are similar to the accuracies reported in Bakker et al. 2009.
Our correlation matrix suggests that internal classification accuracies of LDND
matrices (reported in Bakker et al. 2009) can be boosted through the right com-
bination of typological distances and lexical distances. In our experiments, we
did not control for feature stability and experimented on all available features.
By choosing a smaller set of typological features (from the ranking of Wich-
mann and Holman 2009b) and right similarity measure one might achieve
higher accuracies. The current rate of language extinction is unprecedented
in human history. Our findings might be helpful in speeding up the language
classification of many small dying families by serving as a springboard for
traditional historical linguists.



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 102 — #116 i
i

i
i

i
i



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 103 — #117 i
i

i
i

i
i

8 PHONOTACTIC DIVERSITY

AND TIME DEPTH OF

LANGUAGE FAMILIES

Rama, Taraka 2013. Phonotactic Diversity Predicts the Time Depth of the
World’s Language Families. PloS one 8.5:e63238.

Abstract

The ASJP (Automated Similarity Judgment Program) described an automated,
lexical similarity-based method for dating the world’s language groups us-
ing 52 archaeological, epigraphic and historical calibration date points. The
present paper describes a new automated dating method, based on phonotactic
diversity. Unlike ASJP, our method does not require any information on the
internal classification of a language group. Also, the method can use all the
available word lists for a language and its dialects eschewing the debate of
‘language’ and ‘dialect’. We further combine these dates and provide a new
baseline which, to our knowledge, is the best one. We make a systematic com-
parison of our method, ASJP’s dating procedure, and combined dates. We pre-
dict time depths for world’s language families and sub-families using this new
baseline. Finally, we explain our results in the model of language change given
by Nettle.

8.1 Introduction

Glottochronology, as introduced by Swadesh (1952, 1955), is a method for
estimating the split/divergence time of two phylogenetically related languages
from their common ancestor. It makes use of Swadesh lists, which are short
lists, usually 100—215 items of core vocabulary, supposed to be resistant to
borrowing and is universal and culture-free.

Core vocabulary is supposedly more resistant to lexical replacement than
other vocabulary items. There is an assumption of a universal constant rate
of lexical change over time. The time depth of the point of split between two
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languages is proportional to the logarithm of lexical similarity. The lexical
similarity between two languages is measured as the percentage of cognates,
C, shared between the pair of languages. The time depth is estimated in units
of 1000 years using the following formula.

t =
log C

2 log r
(6)

The constant r is experimentally determined by Lees (1953) using 13 control
cases.

Glottochronology was heavily criticized for several reasons, especially the
following ones:

• The composition of the core vocabulary list is not objective. Only re-
cently, in Holman et al. 2008a; Petroni and Serva 2011 was the as-
sumption of stability of the core vocabulary tested quantitatively for the
worldwide language families.

• The rate of lexical replacement is not constant across different families
or within the families. As demonstrated in Bergsland and Vogt 1962,
Icelandic has a relatively lower rate of lexical change and East Green-
landic Eskimo has a higher rate of lexical change than assumed by Lees
(1953).

The related work in the field of computational historical linguistics is de-
scribed in the next subsection.

8.1.1 Related work

The last decade has seen a surge in the number of papers published in historical
linguistics applying computational and statistical methods. This literature can
be broadly classified into two areas.

One area of work, represented by Wichmann et al. (2010a), Holman et al.
(2008a), Bakker et al. (2009), Holman et al. (2011), Ringe, Warnow and Taylor
(2002), and Gray and Atkinson (2003) focuses on collecting word lists for
various language families for attacking classical historical linguistics problems
such as dating, internal language classification, and lexical stability.

The other area of work, represented by papers such as Wichmann and
Holman (2009a), Wichmann (2010b), Nettle (1999a), Wichmann, Müller and
Velupillai (2010), Hammarström (2010), and Atkinson (2011) is characterized
by the application of quantitative methods to seek answers to questions also
involving socio-historical processes, including the relations between language
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diversity, human population sizes, agricultural patterns and geographical ori-
gins of languages. It should be noted that this classification is not strictly mu-
tually exclusive (see Wichmann 2008 for a survey of the computational, sta-
tistical and inter-disciplinary work on language dynamics and change). Of the
several works cited above, those of Wichmann et al. 2010a, Serva and Petroni
2008, Holman et al. 2011 are relevant to this paper.

Gray and Atkinson (2003) date the Indo-European family as 8000 years
old using a penalized minimum likelihood model which supports the Ana-
tolian hypothesis of language spread. They use a binarily encoded character
matrix (presence/absence of a cognate for a language; judged by comparative
method) for Indo-European from Dyen, Kruskal and Black 1992 for inferring
the phylogenetic tree and dating its nodes.

A completely different approach is taken by the ASJP consortium for the
automated dating of the world’s language families. ASJP38 is a group of schol-
ars who have embarked on an ambitious program of achieving an automated
classification of world’s languages based on lexical similarity. As a means to-
wards this end the group has embarked upon collecting Swadesh lists for all
of the world’s languages. The database is described in the subsection ASJP
Database below.

Holman et al. (2011) collected calibration points for 52 language groups
from archaeological, historical and epigraphic sources. The intra-language gro-
up lexical similarity was computed using a version of the Levenshtein distance
(LD). Levenshtein distance is defined as the minimum number of substitution,
deletion and insertion operations required to convert a word to another word.
This number is normalized by the maximum of the length of the two words
to yield LDN, and finally the distance measure used, LDND (LDN Double
normalized), is obtained by dividing the average LDN for all the word pairs
involving the same meaning by the average LDN for all the word pairs involv-
ing different meanings. The second normalization is done to compensate for
chance lexical similarity due to similar phoneme inventories between unrelated
languages.

Now, we describe the computation of average lexical similarity for a intra-
language group using the Scandinavian calibration point. The Scandinavian
language group has two sub-groups: East Scandinavian with 5 word lists and
West Scandinavian with 2 word lists. The internal classification information is
obtained from Ethnologue (Lewis 2009). The ASJP procedure sums the LDND
of the 10 language pairs and divides them by 10 to yield an average LDND for
Scandinavian language group. Then, they fit a ordinary least-squares regres-
sion model with average lexical similarity as a predictor and time depth as the

38http://email.eva.mpg.de/$~$wichmann/ASJPHomePage.htm
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response variable. The regression yields a highly robust correlation of −.84.
Finally, they use the fitted regression model to predict a language group’s an-
cestral time depth for different language families across the world.

Serva and Petroni (2008) were the first to use LD to estimate the time-depth
of a language family. But their experiments were focused on dating the root of
the Indo-European tree. They primarily use IE database (Dyen, Kruskal and
Black 1992) – augmented by some of their own data – for their experiments.

8.2 Materials and Methods

8.2.1 ASJP Database

The ASJP database (Wichmann et al. 2010b; Expanded versions of the ASJP
database are continuously being made available at 39) has 4817 word lists from
around half of the languages of the world including creoles, dialects, artificial
languages and extinct languages. We work with the version 13 database for
comparability with the results given by the ASJP dating procedure. A lan-
guage and its dialects is identified through a unique ISO 639-3 code given in
Ethnologue (Lewis, Simons and Fennig 2013). The database also contains the
languages’ genetic classification as given in WALS (Haspelmath et al. 2011)
and Ethnologue (Lewis, Simons and Fennig 2013). The database has a shorter
version – the 40 most stable meanings empirically determined by Holman et al.
(2008a) – of the original Swadesh list. A word list for a language is normally
not entered into the database if it has less than 70% of the 40 items. For our ex-
periments, we use a subset of the data obtained by removing all the languages
extinct before 1700 CE.

The word lists in ASJP database are transcribed in ASJPcode (Brown et al.
2008). ASJPcode consists of characters found on a QWERTY keyboard. ASJP-
code has 34 consonant symbols and 7 vowel symbols. The different symbols
combine to form complex phonological segments. Vowel nasalization and glot-
talization are indicated by ∗ and ” , respectively. Modifiers ∼ and $ indicate
that the preceding two or three segments are to be treated as a single symbol.

8.2.2 ASJP calibration procedure

The motivation for and the details of the ASJP calibration procedure is outlined
in this section. There are at least three processes by which the lexical similar-
ity between genetically related languages decreases over time. Shared inher-

39http://email.eva.mpg.de/$~$wichmann/EarlierWorldTree.htm
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ited words (cognates) undergo regular sound changes to yield phonologically
less similar words over time (e.g. English/Armenian two ∼ erku ‘two’; En-
glish/Hindi wheel ∼ chakra ‘wheel’). Words can also undergo semantic shift
or are replaced through copying from other languages causing a decrement in
the lexical similarity between related languages. LDND is designed specifi-
cally to capture the net lexical similarity between languages related through
descent.

The ASJP’s date calibration formula is similar to that of glottochronology
(6). Eqn. 6 implies that the ancestral language is lexically homogeneous at
t = 0. This formula is modified to accommodate lexical heterogeneity of the
ancestral language at time zero by introducing s0, representing average lexical
similarity at t = 0 of the language groups’ ancestral language. The cognate
proportion C is replaced by the ASJP lexical similarity defined as 1−LDND.
The formula then looks as in (2):

t = (log s− log s0)/2 log r (7)

The values of s0 and r are empirically determined by fitting a linear regression
model between the 52 language groups’ time depth (t) and their lexical similar-
ity (s). The intra-language group similarity is defined as the average pairwise
lexical similarity between the languages belonging to the coordinate subgroups
at the highest level of classification. Eqn. 7 and the negative correlation implies
that log lexical similarity has an inverse linear relationship with time depth.

The next subsection describes our findings on the relation between language
group diversity and the age of the group.

8.2.3 Language group size and dates

As mentioned earlier, the ASJP consortium (Holman et al. 2011) collected
common ancestor divergence dates for 52 language groups, based on archae-
ological, historical or epigraphic evidence. Written records can be used to de-
termine the date of divergence of the common ancestral language reliably. The
recorded history of the speakers of the languages can be used to determine the
divergence dates based on major historical events. Since written records do not
exist for temporally deep language families, the date for the common ancestor
must often be inferred from archaeological sources.

Archaeological dates can be determined on the basis of traceability of the
proto-language’s reconstructed words to excavated material objects. Dates can
also be inferred if loanwords can be correlated with historical or archaeologi-
cal events. The process of compiling calibration points was extremely careful
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and archaeological calibration points were only included if they were non-
controversial. Specifically, any glottochronologically determined date was ex-
cluded from the sample.

A description of the sources of the dating points, the language groups’ sub-
grouping adopted for computing the ASJP similarity, and also the ASJP simi-
larity is available in the original paper. We wrote a python program to automat-
ically extract the languages for a given group based on the description given in
the original paper. The data for number of languages, calibration date, type of
the date, the genetic family, the mode of subsistence (pastoral or agriculture;
from the compilation of Hammarström 2010), and the geographic area (based
on the continents Eurasia, Africa, Oceania, the Americas) for each language
group are given in table A.1.

First, we tested whether the sheer size of the language group (LGS) is re-
lated to the calibration dates. The size was determined by counting the number
of languages in each language group, using Ethnologue (Lewis, Simons and
Fennig 2013). A scatter plot with time depth against LGS (on a log-log scale)
shows a linear relationship. The regression, shown in figure 8.1, is r = .81
and highly significant (p < 0.001). The linear relationship is shown by a solid
straight regression line. The younger dates are closer to the regression line than
the older archaeological dates. figure 8.1 also displays the box plots of each
variable along its axis. The box plot of LGS shows three outliers for groups
larger than 400, which are farther away from the rest of the dates but not from
the regression line. The dotted line is the locally fitted polynomial regression
line (LOESS; with degree 2). The LOESS line stays close to the linear regres-
sion line confirming that using a linear regression analysis is appropriate. The
square root of the variance of the residuals for the LOESS line is also shown
as dotted lines on both the sides of the LOESS line.

Although this approach does not require the subgrouping information it is
not without problems. The ASJP database often has word lists from dialects
of a single language. The ASJP calibration procedure described in ASJP cal-
ibration procedure subsection includes all the dialect word lists for a single
language identified by its ISO code. Similarly, the LGS variable also counts
the total number of available word lists for a language group as its size.40

Nettle (1999a) summarizes the ‘language’ vs. ‘dialect’ judgmental difficulties
when adopting language counts from Ethnologue for quantifying language di-
versity (number of languages spoken per unit area). In another work, Nordhoff
and Hammarström (2011) use the term ‘doculect’ to indicate a linguistic vari-
ety identified in its descriptive resource. They use this definition to list various

40We obtain a Pearson’s r = .81 when LGS variable is counted as the number of languages
given in Ethnologue (Lewis, Simons and Fennig 2013).
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Figure 8.1: Calibration dates against the number of languages in a language group.
◦s are archaeological, 4s are archaeological and historical, +s are epi-
graphic and ×s are historical dates.

language variants in their database Langdoc.
In this paper, we follow a different approach which has the following advan-

tages. It requires neither the internal classification information of a language
group nor the judgment of language vs. dialect. The approach can use all the
available word lists for a language and its dialects identified by a unique ISO
639-3 code. Our approach is described in the next subsection.

8.2.4 Calibration procedure

In this section, we describe the computation of N-gram diversity and the model
selection procedure. The model is run through a battery of tests to check for its
robustness. We mix the N-gram model with the ASJP dates to produce a better
baseline. Finally, we use the N-gram model to predict the dates for world-wide
language groups as given in Ethnologue.
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8.2.5 N-grams and phonotactic diversity

N-grams are ubiquitous in natural language processing (NLP) and computa-
tional linguistics, where they are used in systems ranging from statistical ma-
chine translation to speech recognition, but they are relatively unknown in his-
torical linguistics. N-grams are defined as a subsequence of length N from a
sequence of items. The items could be part-of-speech tags, words, morphemes,
characters or phonemes. N-grams were originally introduced as a probabilis-
tic model for predicting the next linguistic item, given a history of linguistic
items (Jurafsky and Martin 2000). The word “oxen” has four letter 1-grams
‘o’,‘x’,‘e’,‘n’; three letter 2-grams ‘ox’, ‘xe’, ‘en’; two letter 3-grams ‘oxe’,
‘xen’ and one letter 4-gram ‘oxen’. In general, any sequence of length n has
n−N +1 N-grams. The number of N-grams can similarly be calculated for a
word in an ASJP word list for a given language.

Having introduced N-grams, we now define the phonological diversity of
a language and show how it can be computed using N-grams. Phonological
diversity for a language is defined as the size of its phoneme inventory. In a
similar fashion, the phonotactic diversity is defined as the total number of pos-
sible phoneme combinations in a language. For a language, the 1-gram diver-
sity (computed from a sufficiently long random list of phonetically transcribed
words) is the same as phonological diversity. Extending it further, the phono-
tactic diversity can be computed as the N-gram diversity (N > 1). Given that
the ASJP database (with its wide coverage) is a database of relatively short, 40-
item word lists, it needs to be investigated whether the total number of unique
phonological segments represented in the 40 item word list can be used as a
proxy for the actual phoneme inventory of a language.

Wichmann, Rama and Holman (2011) report a strong positive linear cor-
relation of r = .61 between the phoneme inventory sizes for a sample of 392
of the world’s languages, from the UPSID database (Maddieson and Precoda
1990) and the number of phonological segments (which is the same as the 1-
gram diversity) represented in word lists for the corresponding languages in
the ASJP database. The mean ratio of the ASJP segment size to the UPSID
inventory size is .817 and the standard deviation is .188. Also, there is a small
correlation (Pearson’s r = .17) between the size of the word list, which can
vary from 28 to 40, and the number of ASJP phonological segments. This puts
us on a solid ground before proceeding to use N-grams, extracted from the
word lists, for purposes of calibrating dates.

The wide coverage of the ASJP database allows us to provide reasonable
relative estimates of the total number of phonological sequences (using ASJP-
code) present in the world’s languages. Since ASJP modifiers∼ and $ combine
the preceding two or three symbols and there are 41 ASJP symbols in total, the
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number of theoretically possible phonological sequences is: 41+412 +413 =
70,643. But the total number of ASJP sequences varies from 500 to 600 across
all languages in the database depending on the criterion for extracting lan-
guages from the ASJP database.

The N-gram (N ∈ [1,5]) diversity of a language group is defined as the set
of all the combined unique phonological segments of length N for the lan-
guages in the group. One might assume that N-grams are not a signature of a
language group or, in other words, that N-grams do not distinguish unrelated
language families from each other. However, it can be empirically established
that N-grams are more successful in distinguishing unrelated languages from
each other than LDND. Wichmann et al. (2010a) devised a measure called
dist41 for measuring the efficacy of a lexical similarity measure (in this case
LDND vs. LDN) in distinguishing related languages vs. unrelated languages.
In a separate experiment, which we will only briefly summarize here, using
ASJP data from 49 of the worlds’ language families, we employed a 2-gram
based measure, Dice,42 for quantifying the distance between the language fam-
ilies and observed that it outperforms LDND in terms of dist. This empirical
result shows that the set of N-grams of a language family is a genetic marker
for identifying related vs. unrelated languages.

8.3 Results and Discussion

Objective judgment of shared inheritance of words in related languages be-
comes increasingly difficult due to the phonological distinctions accumulated
over time. We hypothesize that N-gram diversity for a language group is a non-
decreasing function of time. To verify our hypothesis we check the nature of
relationship between N-grams and dates. The last row in figure 8.2 shows the
scatterplots of calibration dates (CD; given in table A.1) vs. N-grams. The last
column of the upper triangular matrix displays significant correlations and the
highest correlation between 2-grams and CD. Both 3-grams and 1-grams show
a similar correlation with CD whereas, 4-grams and 5-grams show a lower but
a similar correlation. Another non-parametric test, Kendall’s τ , between the
N-gram diversity and CD produces a relatively lower but highly significant
correlation (p < 0.001). The highly significant ρ for different N-grams shows
that the hypothesis holds for different orders of N-grams.

Further, there is a highly significant ρ between N-gram diversity and group

41Dist of a family is defined as the difference between intra-family distance and inter-family
distances divided by the standard deviation of the inter-family distances.

42Between two strings: defined as twice the number of shared bigrams (2-grams) divided by
the total number of bigrams.
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Figure 8.2: Pairwise scatterplot matrix of group size, N−gram diversity and date;
the lower matrix panels show scatterplots and LOESS lines; the upper
matrix panels show Spearman rank correlation (ρ) and level of statistical
significance (?). The diagonal panels display variable names. All the
plots are on a log-log scale.

size, as displayed in figure 8.2. There is a strong correlation between group size
and N-grams (greater than 0.8 for all N). N-grams have a highly significant
correlation (p < 0.001) with each other. Deciding on the optimal value of N
for the purpose of date calibration is a tricky issue. The LOESS lines for 2- and
3-grams are nearly straight lines compared to the rest of N-grams. There needs
to be solid evidence for choosing 2- and 3-grams over the rest of N-grams. We
use the AIC measure (Akaike information criterion) coupled with further tests
for selecting the appropriate value of N. AIC is a relative measure of goodness
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for model selection. This measure is the negative sum of two components: the
number of estimated parameters and the likelihood of the model. The number
of parameters is the same across all the N-gram models. The lower the AIC,
the better is the model. The AIC values for different N-grams are given in
table 8.1. The values suggest that 2-grams followed by 3-grams are the best
fitting models. We employ a generalized linear model (Exponential family –
gamma distribution – and log as link function; implementation available as
glm function in R; R Core Team 2012) with Calibration Dates as the response
variable and N-grams as predictors.

N AIC
1 838.05
2 830.52
3 834.84
4 842.84
5 846.08

Table 8.1: The AIC score for each N−gram model is displayed in second column.
The significance scores for each model compared to the null model are
based on a χ2 test (df = 50). All the residual deviance scores are signifi-
cant at a level of p < 0.001.

Since all calibration dates greater than 2500 BP are archaeological, ASJP
tests the significance of the membership of a calibration date in one of the
three groups (historical, epigraphic, archaeological) using a one-way analysis
of variance (ANOVA). ANOVA tests whether the membership of a date in a
group causes bias in the prediction by each N-gram model. The calibration
dates are grouped by type of dates, language family, geographical area and
mode of subsistence. The data for these groups is available in table A.1. Ta-
ble 8.2 gives the results of the ANOVA analysis for various groups. The first
column shows the group of the date. The second and third columns show the
F-score for algebraic and absolute percent differences for all the N-grams.
The fourth column shows the degrees of freedom. The algebraic and absolute
percent differences are computed as the percentage of algebraic and absolute
residual values to the predicted values.

Both algebraic and absolute percentages are tested against a significance
level of p < 0.01. The test suggests that the predicted dates of 1-grams and
2-grams are biased in terms of type of the dates. The test suggests that the bias
is with respect to archaeological class of dates. All the other values are non-
significant and suggest that there is no difference across the groups. Thus, the
ANOVA analysis suggests that the 3-gram dates are more robust than 2-gram
dates and are unbiased with respect to the groups.

We now test the validity of the assumptions of the regression analysis thr-
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Group F, algebraic df
1 2 3 4 5

Type of date 7.38 6.535 3.217 3.014 3.206 3, 48
Language family 0.61 0.938 1.515 1.441 1.297 16, 35
Geographical area 1.148 1.019 0.533 0.518 0.368 3, 48
Mode of subsistence 2.553 4.152 4.887 2.91 1.988 1, 50
Group F, absolute df

1 2 3 4 5
Type of date 0.455 1.268 2.357 1.766 1.423 3, 48
Language family 0.572 0.501 1.074 1.049 0.77 16, 35
Geographical area 0.093 0.018 0.677 0.603 0.431 3, 48
Mode of subsistence 0.390 0.272 1.164 0.173 0.04 1, 50

Table 8.2: F-score for algebraic and absolute percentage differences. The significant
scores are bold-faced.

ough the standard diagnostic plots, given in section A.2 – figures A.1, A.2,
A.3, A.4, and A.5. The diagnostic plots of 3-gram model in figure A.3 sug-
gest that there has been no violation in the assumptions of regression analysis.
The scatterplot between the predicted values and the residuals do not show
any pattern. The residuals are normally distributed and the plot suggests that
Dardic and Southwest Tungusic groups are the most deviating points. The nor-
mality assumption of the residuals is further tested through a Kolmogorov-
Smirnov test (KST). KST tests against the null hypothesis that the residuals
are distributed normally under a significance criterion of p < 0.01. The test
gives a p = .86 suggesting that we can retain the null hypothesis of normal-
ity. The ASJP dates for Dardic is underestimated by 90% and overestimated
for Southwest Tungusic by 72%. The 3-gram dates for Dardic and Southwest
Tungusic are 1743 BP and 1085 BP, respectively. It is not clear why there is
such a huge discrepancy for these dates. The influential and leverage points
are identified in subplot 3 (in figure A.3). The diagnostic plot does not sug-
gest any influential points whereas there seems to be atleast five high leverage
points in the plot. The leverage points are identified as Benue-Congo, Eastern
Malayo-Polynesian, Ga-Dangme, Indo-European and Malayo-Polynesian. All
these points are archaeological and exceed a time depth of 3500 years (ex-
cept for Ga-Dangme which is both archaeological and historical and only 600
years old). As a matter of fact, the absolute percentage difference with respect
to ASJP dates are as follows: −32,+12,−37,−26 and −41.

Summarizing the regression analysis, there is a strong correlation of .723
between the logarithm of 3-gram diversity and the calibration dates. We tested
the assumptions of regression analysis and find that they are not violated. The
3-gram diversity reflects the net phonotactic diversity accumulated or lost in a
language group over time. The predictions of all the N-gram models and the
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respective calibration date are presented in figure 8.3.
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Figure 8.3: Comparing predicted dates for various n-grams

The current findings can be explained in the terms of the basic model of
language change described in Nettle 1999a. In this model, languages diverge
through imperfect replication of linguistic items amplified by selectional pres-
sure and geographic isolation. Selectional pressures, namely social and func-
tional selection, operate in the selection of the language variants generated
through imperfect learning and the learner’s performance in this language.
3-grams are a proxy for phonotactic diversity. The difference in phonotactic
diversity between two languages represents the net result of phonological ero-
sion, morphological expansion and fusion the language has undergone since
its divergence from its most recent shared ancestor. The correlation between
3-grams and time depth is just the reflection of this strong relation with net
phonotactic diversity.

Since ASJP dates and 3-gram dates use different information from the same
database, it would be interesting to see how the mixture of the predictions of
the two models fare against the calibration dates. Each ASJP date is combined
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with a 3-gram date using the following formula:

COD = k ∗ASJPD+(1− k)∗NGD (8)

where 0 < k < 1, ASJPD is a ASJP date, NGD is either 2-gram or 3-gram
dates and, COD is a combined date. For a value of k, ranging from 0 to 1,
the value of ρ between COD and calibration dates is plotted in figure 8.4. The
horizontal axis displays the scaled k ranging from 0 to 100. Figure 8.4 shows
that there is a modest, but steady increase in the correlation when ASJP dates
are combined with 3-gram dates. The correlation increases until 40% and then
remains stable from 40% to 60%. Both 2-grams and 3-grams show the same
trend. This indicates that a combination of the predictions indeed works better
than individual models for the uncalibrated language families of the world. The
optimal combination for 3-grams is obtained at k = .59.
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Figure 8.4: Combining ASJP with 2−grams and 3−grams: The ASJP dates are
combined with 2−gram dates and 3−gram dates in different proportions
ranging from 1% to 100% at an interval of 1.

The effect of mixing of 3-gram dates with ASJP dates is tested in table 8.3.
Table 8.3 gives a comparison of ASJP dates, 3-gram dates, and combined dates
in terms of: sum and mean of absolute discrepancy, number of languages off
by 50% and 100%, and ρ . The ASJP analysis gave an upper bound of 29% on
the expected discrepancy between ASJP dates and the true dates for different
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language groups. We observe that the average of the absolute percentage dis-
crepancy of combined dates (18%) falls within the range of ASJP discrepancy.
Clearly combined dates outperforms both the ASJP and 3-gram model’s meth-
ods. 3-gram dates have the advantage that they neither requires subgrouping
information nor the distinction between ‘language’ and ‘dialect’ but does not
have the same ρ as ASJP dates. Combined dates performs the best but is the
most complicated and has the disadvantages of ASJP dating.

Measurement ASJP 3−grams combined
Sum of absolute discrepancy 1523 1815 927
Mean of absolute discrepancy 29 34 18
Off by 50% 5 13 2
Off by 100% 1 1 0
Spearman’s ρ .86 .72 .89

Table 8.3: A comparison of different dating methods

8.3.1 Worldwide date predictions

Finally, we predict time depths for the world’s language families, as given
in Ethnologue, using the 3-gram model. A combined date is given through
Eq. 8. Both the predicted and the combined dates are given in tables A.2–A.6
(section A.3). Each table presents the dates for all language families belonging
to a geographical area – as defined in section 8.2. The first column of each
table shows the name of a language family and its subgroups (if any). For
each language family, a subgroup and its further internal classifications are
indented. For the sake of comparison, we give dates only for those families
and subgroups given by ASJP (Holman et al. 2011). The second column in
each table shows the number of languages for a subgroup. The third and fourth
columns show the ASJP dates and the 3-gram predicted dates. The fifth column
shows the combined date, computed using Eq. 8. Whenever the ASJP date is
missing for a language group we did not compute a combined date.

We now comment on the level of agreement found between ASJP dates and
3-gram dates in tables A.2–A.6 and try to explain the differences in terms of
known linguistic or geographic factors. Except for Khoisan, the ASJP dates
as well as 3-gram dates are quite similar. The language families Afro-Asiatic,
Nilo-Saharan, and Niger-Congo are quite old and here the dates are similar.
There is an enormous difference between the two dates for Khoisan. ASJP pre-
dicts 14,500 years as the time depth of Khoisan family whereas 3-grams pre-
dict a shallower date (1,863 years). This huge disagreement could be attributed
to the many-to-one mapping of click consonants by ASJP code. Additionally,
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ASJP (Holman et al. 2011) noted that some of the family classifications given
in Ethnologue are controversial. Such a huge time gap could be a result of a
lack of consensus in the general definition of a language family.

There is a relatively minor difference between the dates in Holman et al.
(2011) and 3-gram dates for the well-established language families of Eurasia
such as Austro-Asiatic, Dravidian, Indo-European, Sino-Tibetan, and Uralic
(table A.3). Both models predict similar dates for Eurasian language families.
The dates for languages of Pacific area is given in table A.4. For Austronesian,
a large language family (974 languages) in the Pacific area, the ASJP and 3-
gram dates are 3,633 and 6,455 years, respectively. The combined date of
Austronesian family is 4,790 years which is fairly close to the age given by
Greenhill, Drummond and Gray (2010), 5,100 years.

3-gram dates and ASJP dates differ greatly for nearly all the language fam-
ilies of North America (table A.5). For instance, ASJP Holman et al. (2011)
predict a time depth of 5,954 years for Algic whereas 3-grams predict 3,236
years. The 3-gram dates and ASJP dates differ by a few decades for the Mixe-
Zoque and Mayan families, which are spoken in Middle America. A similar
kind of difference is evident for a majority of South American languages (table
A.6). In summary, the ASJP and 3-gram dates’ differences cannot be explained
in terms of geographical areas. A huge gap between ASJP and 3-gram dates,
such as Khoisan, might be a potential signal for a phantom phylogeny.

8.4 Conclusion

In this paper we replicated the ASJP consortium’s process of extracting data
representative of 52 language groups for the use of calibrating linguistic chron-
ologies. We proposed N-gram diversity as a measure of phonotactic diversity
and found that 3-gram diversity had a significant correlation of 0.72 with cali-
bration dates. The most important finding was that a combination of ASJP lexi-
cal similarity and 3-gram diversity, currently, is the best baseline for predicting
the time depths for a language family. Finally, time depths for worldwide lan-
guage families were predicted and combined with ASJP dates. The new dates
are provided in section A.3.
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9 EVALUATION OF SIMILARITY

MEASURES FOR AUTOMATIC

LANGUAGE CLASSIFICATION.

Rama, Taraka and Lars Borin 2014. Comparison of string similarity measures
for automated language classification. Under review.

9.1 Introduction

Historical linguistics, the oldest branch of linguistics, deals with language-
relatedness and language change across space and time. Historical linguists ap-
ply the widely-tested comparative method (Durie and Ross 1996) to establish
relationships between languages to posit a language family and to reconstruct
the proto-language for a language family.43 Although, historical linguistics has
a curious parallel origins with biology (Atkinson and Gray 2005), unlike the
biologists, main-stream historical linguists have never been enthusiastic about
using quantitative methods for the discovery of language relationships or pre-
dicting the structure of a language family. However, an earlier shorter period
of enthusiastic application of quantitative methods marked by Swadesh (1950)
ended with the critique of Bergsland and Vogt 1962. The field of computational
historical linguistics did not receive much attention until the beginning of 90’s
with the exception of two note-worthy doctoral dissertations: Embleton 1986;
Sankoff 1969.

In traditional lexicostatistics, as introduced by Swadesh (1952), distances
between languages are based on human expert cognacy judgments of items in
standardized word lists, e.g., the Swadesh lists (Swadesh 1955).44 Recently,
some researchers have turned to approaches more amenable to automation,
hoping that large-scale lexicostatistical language classification will thus be-
come feasible. The ASJP (Automated Similarity Judgment Program) project45

43The Indo-European family is a classical case of the successful application of comparative
method which establishes a tree relationship between the most populous languages of the world

44Gilij (2001) is one of the earliest known attempts at using core vocabulary for positing
inter-language relationships in Americas.

45http://email.eva.mpg.de/~wichmann/ASJPHomePage.htm
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represents such an approach, where automatically estimated distances between
languages are input to programs originally developed in computational biology
(Felsenstein 2004), for the purpose of inferring genetic relationships among or-
ganisms.

As noted above, traditional lexicostatistics assumes that the cognate judg-
ments for a group of languages have been supplied before hand. Given a stan-
dardized word list, consisting of 40–100 items, the distance between a pair
of languages is defined as the percentage of shared cognates subtracted from
100%. This procedure is applied to all pairs of languages, under considera-
tion, to produce a pair-wise inter-language distance matrix. This inter-language
distance matrix is then supplied to a tree-building algorithm such as Neighbor-
Joining (NJ; Saitou and Nei 1987) or a clustering algorithm such as UPGMA46

to infer a tree structure for the set of languages. One such attempt by Swadesh
(1950), even before the discovery of the first clustering algorithm: UPGMA,
for Salish languages is reproduced in figure 9.1.

In the terminology of historical linguistics, cognates are related words a-
cross languages and can be traced back to the proto-language. Cognates are
identified through regular sound correspondences. Usually cognates have sim-
ilar surface form and related meanings. Examples of such revealing kind of
cognates are: English ~ German night ~ Nacht ‘night’ and hound ~ Hund ‘dog’.
If a word has undergone many changes then the relatedness is not obvious from
visual inspection and one needs to look into the history of the word to exactly
understand the sound changes which resulted in the synchronic form. For in-
stance, the English ~ Hindi wheel ~ chakra ‘wheel’ are cognates and can be
traced back to the proto-Indo-European root of kwekwlo−. Usually, the cognate
judgments are obtained from the expert historical linguist’s judgments.

The crucial element in these approaches is the method used for determining
the overall similarity between two word lists.47 Often, this is some variant of
the popular edit distance or Levenshtein distance (LD; Levenshtein 1966). LD
for a pair of strings is defined as the minimum number of symbol (character)
additions, deletions and substitutions needed to transform one string into the
other. A modified LD is used by the ASJP consortium, as reported in their
publications (e.g., Bakker et al. 2009, Holman et al. 2008b, and Holman et al.
2008a). We describe the related work in the next section.

46http://en.wikipedia.org/wiki/UPGMA
47At this point, we use word list and language interchangeably. Strictly speaking, a language,

identified by its ISO 639-3 code, can have as many word lists as the number of dialects.
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Figure 9.1: Salish box-diagram from Swadesh 1950.

9.2 Related Work

In this section, we survey the earlier work in cognate identification and distri-
butional similarity measures for computing inter-language distances. The tasks
of cognate identification and tree-inference are closely related tasks in histor-
ical linguistics. Taking each task as computational module would mean that
each cognate set identified across a set of tentatively related languages feed
into the refinement of the tree inferred at each step. In a critical article, Nichols
(1996) points that the historical linguistics enterprise, since its beginning, al-
ways used a refinement procedure to posit relatedness and tree-structure for
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a set of tentatively related languages.48 The inter-language distance approach
to tree-building, is incidentally straight-forward and comparably accurate in
comparison to the computationally intensive Bayesian-based tree-inference ap-
proach of Greenhill and Gray 2009.

The inter-language distances are either an aggregate score of the pair-wise
item distances or based on a distributional similarity score. The string simi-
larity measures used for the task of cognate identification can also be used for
computing the similarity between two lexical items for a particular word sense.

9.2.1 Cognate identification

The task of identifying the genetically related words – cognates – is very well
explored in computational linguistics. Kondrak (2002a) compares a number
of algorithms based on phonetic and orthographical similarity for judging the
cognateness of a word pair. His work surveys string similarity / distance mea-
sures such as edit distance, dice coefficient and longest common subsequence
ratio (LCSR) for the task of cognate identification.

He developed a string matching algorithm based on articulatory features
(called ALINE) for computing the similarity of a word pair. Although the algo-
rithm is linguistically sound, it requires a International Phonetic transcription
(IPA) transcribed input. ALINE was further evaluated against machine learn-
ing algorithms such as Dynamic Bayesian Networks and Pair-wise HMMs for
automatic cognate identification (Kondrak and Sherif 2006). Even though, the
approach is technically sound, it suffers due to the bare-boned phonetic tran-
scription used in Dyen, Kruskal and Black’s Indo-European dataset.49

Inkpen, Frunza and Kondrak (2005) compared various string similarity mea-
sures for the task of automatic cognate identification for two closely related
languages: English and French. The paper shows an impressive array of string
similarity measures. However, the results are too language specific to be gen-
eralized for the rest of Indo-European family.

In another work, Ellison and Kirby (2006) use Scaled Edit Distance (SED)50

for computing intra-lexical similarity for estimating language distances based
on the dataset of Indo-European languages prepared by Dyen, Kruskal and

48This idea is quite similar to the famous paradigm of Expectation-Maximization in machine
learning field. Kondrak (2002b) uses this paradigm for extracting sound correspondences from
pair-wise word lists for the task of cognate identification. The recent paper of Bouchard-Côté
et al. (2013) employs a feed-back procedure for the reconstruction of Proto-Austronesian with
a great success.

49Available on http://www.wordgumbo.com/ie/cmp/index.htm.
50SED for a pair of strings is defined as the edit distance normalized by the average of the

lengths of the pair of strings.
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Black (1992). The distance matrix is then given as input to the NJ algorithm
as implemented in PHYLIP package (Felsenstein 2002) to infer a tree for 87
languages of Indo-European family.

Petroni and Serva (2010) use a modified version of Levenshtein distance
for inferring the trees of Indo-European and Austronesian language families.
LD is usually normalized by the maximum of the lengths of the two words
to account for length-bias. The normalized LD (LDN) can then be used in
computing distances between pairs of languages.

There are at least two ways of computing inter-language distances: LDN
and LDND. Only pairs of words occupying the same slot in two lists are com-
pared, i.e., words expressing the same sense in the two languages. LDN for
two languages is computed as the mean of the normalized LD of all compared
word pairs. To compensate for chance similarity, LDN is further normalized
by the mean of all N(N− 1)/2 words to yield LDND, employed by Holman
et al. (2008a) for automatic language classification.

Petroni and Serva (2010) claim that LDN is more suitable than LDND for
measuring linguistic distances. In reply, Wichmann et al. (2010a) empirically
show that LDND performs better than LDN for distinguishing the languages
belonging to a same family from the languages of other families. LDND was
designed to make sure that the chance resemblance, similarity in the phonemic
inventory between unrelated languages do not influence the distance between
them.

9.2.2 Distributional measures

Huffman (1998) compute pair-wise language distances based on character n-
grams extracted from Bible texts in European and American Indian languages
(mostly from the Mayan language family). Singh and Surana (2007) use char-
acter n-grams extracted from raw comparable corpora of ten languages from
the Indian subcontinent for computing the pair-wise language distances be-
tween languages belonging to two different language families (Indo-Aryan
and Dravidian). Rama and Singh (2009) introduce a factored language model
based on articulatory features to induce a articulatory feature level n-gram
model from the dataset of Singh and Surana 2007. The feature n-grams of
each language pair are compared using distributional similarity measures such
as cross-entropy to yield a single point distance between a language pair.

Taking cue from the development of tree similarity measures in computa-
tional biology, Pompei, Loreto and Tria (2011) evaluate the performance of
LDN vs. LDND on the ASJP and Austronesian Basic Vocabulary databases
(Greenhill, Blust and Gray 2008). These authors compute NJ and Minimum
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Evolution trees51 for LDN as well as LDND distance matrices. They compare
the inferred trees to the classification given in Ethnologue (Lewis 2009) using
two different tree similarity measures: Generalized Robinson-Fould’s distance
(GRF; A generalized version of Robinson-Fould’s [RF] distance) and Gener-
alized Quartet distance (GQD). GRF and GQD are specifically designed to
account for the polytomous nature – a node having more than two children –
of the Ethnologue trees. Finally, Huff and Lonsdale (2011) compare the NJ
trees from ALINE and LDND distance metrics to Ethnologue trees using RF
distance. The authors did not find any significant improvement by using a lin-
guistically well-informed ALINE over LDND.

However, LD is only one of a number of string similarity measures used in
fields such as language technology, information retrieval and bio-informatics.
Beyond the works cited above, so far there has to our knowledge been no
study to compare different string similarity measures on the same dataset in or-
der to determine their relative suitability for linguistic classification.52 In this
paper we compare various string similarity measures53 for the task of auto-
matic language classification. We evaluate their effectiveness through distinc-
tiveness measure and comparing them to the language classifications provided
in WALS (World Atlas of Language Structures; Haspelmath et al. 2011) and
Ethnologue.

9.3 Contributions

In this article, we ask the following questions:

• Out of the numerous string similarity measures given in section 9.5:

– Which is the best suited for the tasks of distinguishing related lanu-
gages from unrelated languages?

– Which is the best suited for the task of internal language classifi-
cation?

– Is there a statistical procedure for determining the best string sim-
ilarity measure?

• What is the best way to length normalize a string similarity measure?54

51A tree building algorithm closely related to NJ.
52One reason for this may be that the experiments are computationally demanding, requiring

several days for computing a single measure over the whole ASJP dataset.
53A complete list of string similarity measures is available on: http://www.coli.

uni-saarland.de/courses/LT1/2011/slides/stringmetrics.pdf
54Marzal and Vidal (1993) propose an alternate normalization based on the length of the
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9.4 Database and expert classifications

In this section, we describe the ASJP database and the two expert classifica-
tions: WALS and Ethnologue.

9.4.1 Database

The ASJP database offers an attractive alternative to corpora as the basis for
massive cross-linguistic investigations. The ASJP effort began with a small
dataset of 100-word lists for 176 languages. These languages belong to more
than 23 language families, as defined in WALS (Haspelmath et al. 2011). Since
Brown et al. (2008), the ASJP database has been going through an expansion,
to include in its latest version (v. 14) more than 5500 word lists representing
well over one half of the languages of the world Wichmann et al. 2011b).
Because of the findings reported by Holman et al. (2008a), most of the added
word lists have aimed to cover only the 40-item most stable Swadesh subset,
and not the full 100-item list.

Figure 9.2: Distribution of languages in ASJP database (version 14).

Each lexical item in an ASJP word list is transcribed in a broad phonetic
transcription known as ASJP Code (Brown et al. 2008). The ASJP code con-
sists of 34 consonant symbols, 7 vowels, and three modifiers, all rendered by
characters available on the English version of the QWERTY keyboard. Tone,
stress and vowel length are ignored in this format. The three modifiers combine

editing path. Kondrak (2005b) tests this claim on three different datasets and finds that there is
no significant difference between the two normalizations.
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symbols to form phonologically complex segments (e.g., aspirated, glottalized,
or nasalized segments).

In order to ascertain that our results would be comparable to those pub-
lished by the ASJP group, we successfully replicated their experiments for
LDN and LDND measures using the ASJP program and the ASJP dataset ver-
sion 12 (Wichmann et al. 2010c).55 This database comprises of reduced (40–
item) Swadesh lists for 4169 word lists. All pidgins, creoles, mixed languages,
artificial languages, proto-languages and languages extinct before 1700 CE
were excluded for the experiment, as were language families represented by
less than 10 word lists. This leaves a dataset with 3730 word lists. It turned out
that 60 word lists did not have English glosses for the items, which meant that
they could not be processed by the program, so these languages were excluded
from the analysis.

All the experiments reported in this paper were performed on a subset of
version 14 of the ASJP database whose distribution is shown in figure 9.2.56

The database has 5500 word lists, including not only living languages, but
also extinct ones. The database also contains word lists for pidgins, creoles,
mixed languages, artificial languages, and proto-languages, all of which have
been excluded from the current study. Among the extinct languages, only those
languages were included which have gone extinct less than three centuries ago.
Also, any word list containing less than 28 words (70%) was not included in
the final dataset. We use the family names of the WALS (Haspelmath et al.
2011) classification. Following Wichmann et al. 2010a, any family with less
than ten languages is excluded from our experiments. The final dataset for our
experiments has 4743 word lists for 50 language families.

WALS. WALS classification is a two-level classification where each lan-
guage belongs to a genus as well as family. A genus is a genetic classifica-
tion unit given by Dryer (2000) and consists of set of languages supposedly
descended from a common ancestor which is 3000 to 3500 years old. For in-
stance, Indic languages are classified as a separate genus from Iranian lan-
guages although, it is quite well known that both Indic and Iranian languages
share a common proto-Indo-Iranian ancestor.

Ethnologue. Ethnologue classification is a multi-level tree classification for
a language family. Ethnologue classification was originally given by mission-
aries and is very opportunistic in the inclusion of languages or genetic related-
ness. The highest node in a family tree is the family itself and languages form
the lowest node. A internal node in the tree is not necessarily binary and can

55The original python program was kindly provided by Søren Wichmann. We modified the
program to handle the ASJP modifiers.

56Available on http://email.eva.mpg.de/~wichmann/listss14.zip.
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Family Name WN # WLs Family Name WN # WLs
Afro-Asiatic AA 287 Mixe-Zoque MZ 15
Algic Alg 29 MoreheadU.Maro MUM 15
Altaic Alt 84 Na-Dene NDe 23
Arwakan Arw 58 Nakh-Daghestanian NDa 32
Australian Aus 194 Niger-Congo NC 834
Austro-Asiatic AuA 123 Nilo-Saharan NS 157
Austronesian An 1008 Otto-Manguean OM 80
Border Bor 16 Panoan Pan 19
Bosavi Bos 14 Penutian Pen 21
Carib Car 29 Quechuan Que 41
Chibchan Chi 20 Salish Sal 28
Dravidian Dra 31 Sepik Sep 26
Eskimo-Aleut EA 10 Sino-Tibetan ST 205
Hmong-Mien HM 32 Siouan Sio 17
Hokan Hok 25 Sko Sko 14
Huitotoan Hui 14 Tai-Kadai TK 103
Indo-European IE 269 Toricelli Tor 27
Kadugli Kad 11 Totonacan Tot 14
Khoisan Kho 17 Trans-NewGuinea TNG 298
Kiwain Kiw 14 Tucanoan Tuc 32
LakesPlain LP 26 Tupian Tup 47
Lower-Sepik-Ramu LSR 20 Uralic Ura 29
Macro-Ge MGe 24 Uto-Aztecan UA 103
Marind Mar 30 West-Papuan WP 33
Mayan May 107 WesternFly WF 38

Table 9.1: Distribution of language families in ASJP database. WN and WLs stands
for WALS Name and Word Lists.

have more than two branches emanating from it. For instance, the Dravidian
family has four branches emanating from the top node.

9.5 Methodology

In this section, we describe the various string and distributional similarity mea-
sures which form the basic component in calculating the pair-wise language
distances. As mentioned earlier, string similarity measures work at the level of
individual words whereas distributional measures work at the level of word-
lists.

9.5.1 String similarity

We describe the different string similarity measures used in this paper.

• IDENT returns 1 if the two words are equivalent else returns 0.
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• PREFIX returns the length of the common prefix divided by the length
of the longer word.

• DICE is defined as the number of shared segment bigrams divided by
the total number of bigrams in both the words.

• LCSR is defined as the length of the longest common subsequence di-
vided by the length of the longer word.

• TRIGRAM is defined as twice the number of shared trigrams divided by
the sum of the shared trigrams.

• XDICE is defined similar to DICE where a bigram is a trigram with the
middle letter removed.

• Jaccard’s index, JCD, is a set cardinality measure. It is defined as the
ratio of the cardinality of the intersection of the bigrams between the
two words to the cardinality of the union of the sets of bigrams between
two words.

Each Msim is converted to its distance counterpart by subtracting the score
from 1.0. Lin (1998) investigates three distance to similarity conversion tech-
niques and motivates the results from an information-theoretical point. In this
article, we do not investigate this rather, we stick to the traditional conversion
technique. Note that this conversion can sometimes result in a negative dis-
tance which is due to the double normalization involved in LDND. A suffix
“D” is added to each measure to indicate the LDND variant.

9.5.2 N-gram similarity

This section describes the distributional similarity measures originally devel-
oped for automatic language identification in a multi-lingual document. This
line of work started with the heavily cited paper of Cavnar and Trenkle 1994
who use character n-grams for text categorization. They observe that the fre-
quency of character n-grams for a particular document category follows a Zip-
fian distribution. The rank of character n-grams vary for different categories
and documents belonging to the same category have similar Zipfian distribu-
tions. Based on this idea, Dunning (1994) postulates that the character n-grams
for a language has its own signature distribution. Comparing the signatures of
two languages can yield a single point distance between the languages under
comparison. The comparison procedure is usually accomplished through the
use of a distributional similarity measure (Singh 2006). The following steps
are followed for extracting the phoneme n-gram profile for a language.
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For a language, the n-gram extraction procedure is as follows:

• A n-gram is defined as the consecutive phonemes in a window of N. The
value of N usually ranges from 3 to 5.

• All the unigrams, bigrams and trigrams are extracted for a lexical item.
This step is repeated for all the lexical items in a word list.

• All the extracted n-grams are mixed and sorted in the descending order
of their frequency. The relative frequency of the n-grams are computed.

• Only the top G n-grams are retained and the rest of them are pruned.
Usually G is fixed at 50.

For every pair of language, the n-gram profiles are compared using Out-
of-Rank measure, Jaccard’s index, Dice distance, Overlap distance, Manhattan
distance and Euclidean distance. The distances are explained below:

1. Out-of-Rank measure is defined as the aggregate sum of the absolute
difference in the rank of the shared n-grams between a pair of language.

2. Jaccard’s index is a set cardinality measure. It is defined as the ratio
of the cardinality of the intersection of the n-grams between the two
languages to the cardinality of the union of the two languages.

3. Dice distance is related to Jaccard’s Index. It is defined as the ratio of
twice the number of shared n-grams to the total number of n-grams in
both the language profiles.

4. Manhattan distance is defined as the sum of the absolute difference be-
tween the relative frequency of the shared n-grams.

5. Euclidean distance is defined in a similar fashion to Manhattan distance
where the individual terms are squared.

One possible set of measures, based on n-grams, and could be included are
information theoretic based such as cross entropy and KL-divergence. These
measures have been well-studied in natural language processing systems such
as machine translation, natural language parsing, sentiment identification, and
also in automatic language identification. The probability distributions required
for using these measures are usually estimated through maximum likelihood
estimation which require a fairly large amount of data. While replicating the
original ASJP experiments on the version 12 ASJP database, we tested if the
above distributional measures, [1–4] perform as well as LDN. Unfortunately,
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the results are on the discouraging side of the spectrum and we do not repeat
the experiments on the version 14 of the database. One main reason for this re-
sult is the relatively small size of ASJP word list. The relatively small word list
size provides a poor estimates of the true language signatures. The next section
describes the three different evaluation measures for comparing the different
string similarity measures.

9.6 Evaluation measures

In this section, we describe the three different evaluation measures for ranking
the string similarity measures given in section 9.5.

1. The first measure dist, originally given by Wichmann et al. (2010a) to
test if LDND performs better than LDN in the task of distinguishing
related languages from unrelated languages.

2. The second measure, RW, is a special case of pearson’s r – called point
biserial correlation (Tate 1954) – for computing the agreement between
WALS’s two-level classification and the intra-family pair-wise distances.

3. The third measure, γ , is related to the Goodman and Kruskal’s Gamma
(1954) which measures the strength of association between two ordinal
variables. In this paper, it is used to compute the level of agreement
between the Ethnologue classification and the pair-wise intra-language
distances.

9.6.1 Dist

Initially, we define a function f am which takes a language name and returns
the family to which the language belongs.

When, f am(i) = f am( j)

din =
1

∑i= j 1 ∑
i 6= j

di, j (9)

When, f am(i) 6= f am( j)

dout =
1

∑i6= j 1 ∑
i6= j

di, j (10)

sdout = stdev(di, j) (11)
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dist =
din−dout

sdout
(12)

The dist measure for a family consists of two components: the pair-wise
distances inside a family (din) and the pair-wise distances from each language
in the family to the rest of the language families. A comparatively higher dist
value suggests that a measure is particularly resistant to random similarities be-
tween unrelated languages and performs well at distinguishing elements from
a genealogical unit from the rest of the dataset. The resistance of a string sim-
ilarity measure to other language families is reflected by the value of sdout

which denotes the standard deviation of dout .

9.6.2 Correlation with WALS

The WALS database has classification at three levels. The top level is the fam-
ily of the language, second level is the genus and the lowest level is the lan-
guage itself. Two languages from different genera and same family have a dis-
tance of 2 and a distance of 1 if they are in the same genus. This allows us to
define a inter-language distance matrix between the languages in a family. The
WALS distance matrix can be compared to the distance matrices of any mea-
sure using Pearson’s r. The families with a single genus have no correlation
and the corresponding row is left blank.

9.6.3 Agreement with Ethnologue

Given a pair-wise distance-matrix d of size N×N, where each cell di j is the
distance between two languages i and j and an Ethnologue tree E, the compu-
tation of γ for a language family is defined as follows:

1. Find all the triplets for a language family of size N. A triplet, t for a lan-
guage family is defined as {i, j,k}, where i, j,k are languages belonging
to a family. A language family of size N has

(N
3

)
triplets.

2. For the members of each such triplet t, there are three distances di j, dik,
and d jk. The expert classification tree E can treat the three languages
{i, j,k} in four possible ways (| denotes a partition): {i, j | k}, {i,k | j},
{ j,k | i} or can have a tie where all languages emanate from the same
node. All ties are ignored in the computation of γ .
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3. For a partition {i, j | k}, the distance matrix d is said to agree completely
when the following conditions are satisfied:

di j < dik (13)

di j < d jk (14)

A triplet that satisfies these conditions is counted as a concordant com-
parison, C; else it is counted as disconcordant comparison, D.

4. Steps 2 and 3 are repeated for all the
(N

3

)
triplets to yield γ for a family

defined as γ = C−D
C+D .

At this point, one might wonder about the decision for not using a off-the-
shelf tree-building algorithm to infer a tree and compare the resulting tree with
the Ethnologue classification. Although both the works of Pompei, Loreto and
Tria 2011; Huff and Lonsdale 2011 compare their trees to Ethnologue using
cleverly crafted tree-distance measures, they do not compare their distance ma-
trices directly. A direct comparison of a family distance matrix to the family’s
Ethnologue tree removes the errors induced by the tree inference algorithm.
The results of Wichmann et al. 2011a, suggest that the GE measure shows a
high negative correlation with the GRF and GQD for the LDND distance ma-
trix computed from ASJP database (v. 14) families.

9.7 Item-item vs. length visualizations

A distance measure such as LDND has two components:

• The average LDN computed between pair-wise lexical items for the
same meaning.

• The average LDN computed between pair-wise lexical items for differ-
ent meaning-meaning pair.

Although, there have been multitude of publications involving LDND, no
effort has been put to look the base components of LDND through a magni-
fying glass. It is quite interesting to see the overall distribution between LD
and the lengths of the lexical items under comparison. We proceed to see
the variation of the pair-wise LDs vs. the pair-wise word lengths for lexical
items sharing the same meaning and different meanings. We select a small (31
word lists) but well-studied language family called Dravidian family, spoken
in South Asia (comprising of modern day India, Pakistan, and Nepal), for this
study.
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Figure 9.3: 3D scatterplot for Dravidian language family and same items. There are
more than 21,000 points in this plot.

We compute the LD between all the word pairs for a same meaning. We
plot the corresponding LD and the word-length pairs on a three-dimensional
plot as shown in figure 9.3. We repeat the exercise now for the word-pairs for
different meaning pairs and plot them in figure 9.4. A 3-dimensional scatterplot
would has the advantage of showing the distribution of pair-wise LD distances
against the length of the word-pairs. In the next step, we fit a linear regression
plane to the distribution. This plane would show the number of points which
fall below or above the regression plane. The regression shown in figure B.1 is
highly significant and has an adjusted-R2 value of 0.2554 (p < 2.2e−16). The
multiple regression for different meaning-meaning pairs shows an adjusted-
R2 value of 0.4953 (p < 2.2e− 16). These multiple regressions support the
hypothesis that there exists a linear relationship between pair-wise lengths and
LD.

Given that, the multiple regressions support a linear function of pair-wise
lengths, it would be interesting to plot a scatterplot of LD vs. average length
and LD vs. maximum length for the above two datasets. We employ the hexag-
onal binning technique for showing the huge number of points. The size of a
bin is depicted through the color intensity and a color legend shows the num-
ber of points in a bin. The results of this technique is shown in the figures B.1,
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Figure 9.4: 3D scatterplot for Dravidian language family and different items. There
are about 1 million data points resulting from this exercise. So, we ran-
domly show 22,000 points in this plot.

B.2, B.3, and B.4. Each of the hexagonal plot is plotted using 100 bins. Av-
erage length vs. LD is more dispersed in same as well as different meaning
pairs. The maximum length normalization seems to follow LD closely in both
the plots. We take this as visualization as a support for preferring maximum
length normalization over average length normalization.

The results of comparison of the various string similarity measures is de-
scribed in the next section.

9.8 Results and discussion

In this section we give the results of our experiments in table 9.2. We only
report the average results for all measures across the families listed in table 9.1.
We further check the correlation between the three measures by computing a
Spearman’s ρ . The pair-wise ρ is given in table 9.3. The high correlation value
of 0.95 between RW and γ suggests that all the measures agree roughly on the
task of internal classification.

The average scores in each column suggests that the string similarity mea-
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Measure Average Dist Average RW Average γ

DICE 3.3536 0.5449 0.6575
DICED 9.4416 0.5495 0.6607
IDENT 1.5851 0.4013 0.2345
IDENTD 8.163 0.4066 0.3082
JCD 13.9673 0.5322 0.655
JCDD 15.0501 0.5302 0.6622
LCS 3.4305 0.6069 0.6895
LCSD 6.7042 0.6151 0.6984
LDN 3.7943 0.6126 0.6984
LDND 7.3189 0.619 0.7068
PREFIX 3.5583 0.5784 0.6747
PREFIXD 7.5359 0.5859 0.6792
TRIGRAM 1.9888 0.4393 0.4161
TRIGRAMD 9.448 0.4495 0.5247
XDICE 0.4846 0.3085 0.433
XDICED 2.1547 0.4026 0.4838
Average 6.1237 0.5114 0.5739

Table 9.2: Average results for each string similarity measure across the 50 families.
The rows are sorted by the name of the measure.

Dist RW

γ 0.30 0.95
Dist 0.32

Table 9.3: Spearman’s ρ between γ , RW and Dist

sures show a variable performance. How does one decide which measure is the
best in a column? What kind of statistical testing procedure should be adopted
for deciding upon a measure? We address this questions through the following
procedure:

1. For a column i, sort the average scores, s in descending order.

2. For a row index 1 ≤ r ≤ 16, test the significance of sr ≥ sr+1 through a
sign test.57 This test yields a p− value.

The above significant tests are not independent by themselves. Hence, we
cannot reject a null hypothesis H0 at a significance level of α = 0.01. The α

needs to be corrected for multiple tests. Unfortunately, the standard Bonfer-
roni’s multiple test correction or Fisher’s Omnibus test works for a global null
hypothesis and not at the level of a single test. We follow the procedure, called

57http://en.wikipedia.org/wiki/Sign_test
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False Discovery Rate (FDR), given by Benjamini and Hochberg (1995) for
adjusting the α value for multiple tests. Given H1 . . .Hm null hypotheses and
P1 . . .Pm p-values, the procedure works as follows:

1. Sort the Pk, 1 ≤ k ≤ m, values in ascending order. k is the rank of a
p-value.

2. The adjusted α∗k value for Pk is k
m α .

3. Reject all the H0s from 1, . . . ,k where Pk+1 > α∗k .

The above procedure ensures that the chance of incorrectly rejecting a null hy-
pothesis is 1 in 20 for α = 0.05 and 1 in 100 for α = 0.01. In this experimental
context, this suggests that we erroneously reject 0.75 true null hypotheses out
of 15 hypotheses for α = 0.05 and 0.15 hypotheses for α = 0.01. We report
the γ , Dist and RW for each family in tables B.1, B.2, and B.3. In each of these
tables, only those measures which are above the average scores, from table 9.2,
are reported. A empty row in table B.1 implies that all triplets in Ethnologue
tree are ties and; in table B.3, implies that there is a single genus in that family.

The FDR procedure for γ suggests that no sign test is significant. This is
in agreement with the result of Wichmann et al. 2010a who showed that the
choice of LDN or LDND is quite unimportant for the task of internal clas-
sification. The FDR procedure for RW suggests that LDN > LCS, LCS >
PREFIXD, DICE > JCD, and JCD > JCDD. Here A > B denotes that A is
significantly better than B. The FDR procedure for Dist suggests that JCDD >
JCD, JCD > TRID, DICED > IDENTD, LDND > LCSD, and LCSD > LDN.

The results point towards an important direction in the task of building
computational systems for automatic language classification. The pipeline for
such a system consists of 1) distinguishing related languages from unrelated
languages and 2) internal classification accuracy. JCDD performs the best with
respect to Dist. Further, JCDD is derived from JCD and can be computed in
O(m+n), for two strings of length m and n. In comparison, LDN is in the order
of O(mn). In general, the computational complexity for computing distance
between two word lists for all the significant measures is given in table 9.4.
Based on the computational complexity and the significance scores, we pro-
pose that JCDD be used for step 1 and measure like LDN be used for internal
classification.

9.9 Conclusion

We conclude the article by pointing that this is the first known attempt at ap-
plying more than 20 similarity measures for more than half of the world’s lan-
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Measure Complexity
JCDD CO(m+n+min(m−1,n−1))
JCD lO(m+n+min(m−1,n−1))
LDND CO(mn)
LDN lO(mn)
PREFIXD CO(max(m,n))
LCSD CO(mn)
LCS lO(mn)
DICED CO(m+n+min(m−2,n−2))
DICE lO(m+n+min(m−2,n−2))

Table 9.4: Computation complexity for top performing measures for computing dis-
tance between two word lists. Given two word lists each of length l. m
and n denote the lengths of a word pair wa and wb and C = l(l−1)/2

guages. We examine various measures at two levels, namely, distinguishing re-
lated from unrelated languages and internal classification of related languages.
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A SUPPLEMENTARY

INFORMATION TO

PHONOTACTIC DIVERSITY

This chapter contains the supplementary information (tables and figures) re-
ferred in paper IV.

A.1 Data

Table A.1 presents the details of the calibration points used in the experiments.
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Language group NOL CD Type Family name MOS Geographic area
Benue-Congo 404 6500 A Niger-Congo AGR Africa
Brythonic 2 1450 H Indo-European AGR Eurasia
Central SouthernAfrica Khoisan 7 2000 A Khoisan PAS Africa
Cham 2 529 H Austronesian AGR Oceania
Chamic 7 1550 H Austronesian AGR Oceania
Chinese 7 2000 H Sino-Tibetan AGR Eurasia
Cholan 5 1600 E Mayan AGR Americas
Common Turkic 50 1419 H Altaic AGR Eurasia
Czech-Slovak 2 1050 E Indo-European AGR Eurasia
Dardic 22 3550 A Indo-European AGR Eurasia
East Polynesian 11 950 A Austronesian AGR Oceania
East Slavic 4 760 H Indo-European AGR Eurasia
Eastern Malayo-Polynesian 472 3350 A Austronesian AGR Oceania
English-Frisian 4 1550 H Indo-European AGR Eurasia
Ethiopian Semitic 18 2450 E Afro-Asiatic AGR Africa
Ga-Dangme 2 600 AH Niger-Congo AGR Africa
Germanic 30 2100 H Indo-European AGR Eurasia
Goidelic 3 1050 E Indo-European AGR Eurasia
Hmong-Mien 14 2500 E Hmong-Mein AGR Eurasia
Indo-Aryan 93 3900 A Indo-European AGR Eurasia
Indo-European 218 5500 A Indo-European AGR Eurasia
Indo-Iranian 147 4400 A Indo-European AGR Eurasia
Inuit 4 800 A Eskimo-Aleut PAS Americas
Iranian 54 3900 A Indo-European AGR Eurasia
Italo-Western Romance 12 1524 H Indo-European AGR Eurasia
Ket-Yugh 2 1300 H Yeniseian PAS Eurasia
Maa 3 600 H Nilo-Saharan AGR Africa
Malagasy 20 1350 A Austronesian AGR Oceania
Malayo-Chamic 30 2400 A Austronesian AGR Oceania
Malayo-Polynesian 954 4250 A Austronesian AGR Oceania
Maltese-Maghreb Arabic 3 910 H Afro-Asiatic AGR Africa
Mississippi Valley Siouan 9 2475 A Siouan PAS Americas
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Mongolic 8 750 H Altaic AGR Eurasia
Northern Roglai Tsat 2 1000 H Austronesian AGR Oceania
Ongamo-Maa 4 1150 A Nilo-Saharan AGR Africa
Oromo 6 460 E Afro-Asiatic AGR Africa
Pama-Nyungan 122 4500 A Australian PAS Oceania
Romance 14 1729 H Indo-European AGR Eurasia
Romani 26 650 H Indo-European AGR Eurasia
Sami 6 1750 A Uralic PAS Eurasia
Scandinavian 7 1100 E Indo-European AGR Eurasia
Slavic 16 1450 H Indo-European AGR Eurasia
Sorbian 3 450 E Indo-European AGR Eurasia
Southern Nilotic 11 2500 A Nilo-Saharan AGR Africa
Southern Songhai 6 550 H Nilo-Saharan AGR Africa
Southwest Tungusic 3 236 H Altaic AGR Eurasia
Swahili 10 1200 AH Niger-Congo AGR Africa
Temotu 9 3200 A Austronesian AGR Oceania
Tupi-Guarani 10 1750 AH Tupi AGR Americas
Turkic 51 2500 AH Altaic AGR Eurasia
Wakashan 5 2500 A Wakashan PAS Americas
Western Turkic 11 900 H Altaic AGR Eurasia

Table A.1: NOL stands for number of languages, CD for calibration dates and MOS for mode of subsistence. In column “Type”: ‘A’ is
archaeological, ‘AH’ is archaeological and historical, ‘H’ is historical and ‘E’ is epigraphic calibration points. In column MOS:
‘AGR’ is agricultural and ‘PAS’ is foraging and pastoral.
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A.2 Diagnostic Plots

In this section, we present the four standard diagnostic plots for a linear regres-
sion analysis. Each plot has four sub-plots. The sub-plots from left-to-right in
each row are summarized as followed:

• The scatter plot of the residuals vs the predicted value on a log scale.

• The residuals fitted against a standard normal distribution for testing the
normality assumption of the residuals.

• A scatterplot showing the Cook’s statistic vs. the leverage of each obser-
vation. Cook statistic suggests any points which influence the estimation
of the regression parameters through a jackknifing procedure. The lever-
age points are those observations whose omitting influences the error
value.

• A case plot of the Cook’s statistic.

Figure A.1: Diagnostic plots for 1-grams
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Figure A.2: Diagnostic plots for 2-grams

Figure A.3: Diagnostic plots for 3-grams

Figure A.4: Diagnostic plots for 4-grams
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Figure A.5: Diagnostic plots for 5-grams



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 169 — #183 i
i

i
i

i
i

A.3 Dates of the world’s languages 169

A.3 Dates of the world’s languages

The following tables present the predicted dates for the world languages from
Africa, Eurasia, Pacific, North and Middle America, and South America. NOL
and CD are Number of Languages and Calibration Date.

Language group NOL ASJP date 3-grams date CD
Afro-Asiatic 255 6016 5769 5915
Berber 23 1733 2220 1933
Eastern 3 1697 1159 1476
Northern 15 1158 1750 1401
Tamasheq 4 556 1208 823

Chadic 98 4826 4214 4575
Biu-Mandara 45 4457 3299 3982
Masa 8 1649 1526 1599
West 40 4099 2943 3625

Cushitic 61 4734 3421 4196
Central 8 1686 1493 1607
East 46 3045 3013 3032
South 6 2308 1522 1986

Omotic 31 4968 2622 4006
North 28 3137 2481 2868
South 3 1963 1108 1612

Semitic 40 3301 3234 3274
Central 18 2638 2405 2542
South 22 3804 2557 3293

Khoisan 17 14592 1863 9373
SouthernAfrica 15 5271 1676 3797
Central 7 3143 1223 2356
Northern 3 1846 873 1447
Southern 5 4344 936 2947

Niger-Congo 679 6227 6889 6498
Atlantic-Congo 594 6525 6672 6585
Atlantic 32 2582 2773 2660
Northern 21 6480 2389 4803
Southern 10 5055 1712 3684
Ijoid 34 4546 1831 3433
Volta-Congo 528 5484 6476 5891
Benue-Congo 404 4940 5887 5328
Dogon 10 2202 1471 1902
Kru 5 2317 1012 1782
Kwa 35 4212 2773 3622

Kordofanian 20 4861 2407 3855
Heiban 11 2521 1789 2221
Katla 2 2269 1086 1784
Talodi 6 4658 1507 3366

Mande 64 3417 2520 3049
Eastern 17 1905 1399 1698
Western 47 3047 2257 2723

Nilo-Saharan 149 6642 4563 5790
CentralSudanic 44 5114 2590 4079
East 27 3715 2083 3046

EasternSudanic 68 5988 3667 5036
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Eastern 14 5103 2098 3871
Nilotic 47 4508 3152 3952
Western 6 5601 1586 3955

Kadugli-Krongo 11 1221 1641 1393
Komuz 9 5209 1656 3752
Koman 6 2542 1411 2078

Saharan 4 3941 1409 2903
Western 3 3553 1322 2638

Songhai 8 1333 1377 1351
Northern 2 807 859 828
Southern 6 580 1220 842

Table A.2: Dates for language groups of Africa

Language group NOL ASJP date 3-grams date CD
Altaic 79 5954 3236 4840

Mongolic 8 2267 1663 2019
Eastern 7 2145 1562 1906
Tungusic 20 1319 2004 1600
Northern 9 1092 1416 1225
Southern 11 1595 1686 1632
Turkic 51 3404 2430 3005

Andamanese 10 4510 1720 3366
GreatAndamanese 8 2122 1493 1864
SouthAndamanese 2 1186 997 1109

Austro-Asiatic 116 3635 3694 3659
Mon-Khmer 97 3406 3481 3437
Aslian 9 2080 1606 1886
EasternMon-Khmer 41 2479 2372 2435
Nicobar 3 3158 1223 2365
NorthernMon-Khmer 29 3259 2271 2854
Palyu 2 2861 501 1893
Viet-Muong 8 2289 1198 1842
Munda 19 2574 1701 2216
NorthMunda 15 1209 1180 1197
SouthMunda 4 2510 1353 2036

Chukotko-Kamchatkan 5 3368 1781 2717
Northern 3 1192 1471 1306

Dravidian 23 2055 2196 2113
Central 3 695 851 759
Northern 3 2030 994 1605
South-Central 7 2447 1501 2059
Southern 10 1894 1628 1785

Hmong-Mien 14 4243 1420 3086
Hmongic 9 2777 1132 2103

Indo-European 218 4348 4855 4556
Baltic 2
Eastern 2 1469 1169 1346
Celtic 5
Insular 5 3876 1547 2921
Germanic 30 1745 2417 2021
North 7 1569 1507 1544
West 23 1398 2110 1690
Indo-Iranian 147 3665 3657 3662
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Indo-Aryan 93 1996 3076 2439
Iranian 54 2856 2494 2708
Italic 14
Romance 14 1759 2136 1914
Slavic 16 1157 2092 1540
East 4 1288 1447 1353
South 6 691 1285 935
West 6 820 1413 1063

Japonic 7 1564 1242 1432
Kartvelian 4 2999 1442 2361

Zan 2 596 1042 779
NorthCaucasian 37 7709 3065 5805

EastCaucasian 32 3907 2863 3479
WestCaucasian 5 3649 1245 2663

Sino-Tibetan 165 5261 4445 4926
Chinese 7 2982 1489 2370
Tibeto-Burman 158 4203 4325 4253
Bai 18 1494 717 1175
Himalayish 54 3182 2944 3084
Karen 10 2345 1148 1854
Kuki-Chin-Naga 18 3411 2122 2883
Lolo-Burmese 9 3436 1471 2630
Nungish 3 1955 675 1430
Tangut-Qiang 3 4660 972 3148

Tai-Kadai 68 3252 2009 2742
Hlai 3 2353 726 1686
Kadai 9 2613 981 1944
Kam-Tai 56 2376 1767 2126

Uralic 24 3178 2666 2968
Finnic 6 876 1278 1041
Mordvin 2 800 1015 888
Permian 3 953 891 928
Sami 6 1532 1564 1545
Samoyed 2 2850 1006 2094

Yeniseian 6 2661 1592 2223
AP 2 2762 1172 2110
KA 2 781 981 863

Yukaghir 2 2027 1162 1672

Table A.3: Dates for language groups of Eurasia

Language group NOL ASJP date 3-gram date CD
Amto-Musan 3 2189 997 1700
Arai-Kwomtari 9 7386 2030 5190

Arai(LeftMay) 4 2974 1358 2311
Kwomtari 5 5968 1686 4212

Australian 192 5296 4534 4984
Bunaban 2 1538 1021 1326
Daly 17 3941 1783 3056
Bringen-Wagaydy 10 2320 1344 1920
Malagmalag 4 1635 1169 1444
Murrinh-Patha 3 2747 1074 2061
Djeragan 2 2750 1240 2131
Giimbiyu 3 415 1130 708
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Gunwingguan 25 4517 2714 3778
Burarran 3 3612 1442 2722
Enindhilyagwa 3 4746 1331 3346
Gunwinggic 6 2951 1392 2312
Maran 3 2661 1397 2143
Rembargic 2 1925 1030 1558
Yangmanic 2 1609 1240 1458
Pama-Nyungan 122 4295 3958 4157
Arandic 5 1892 1403 1692
Dyirbalic 4 2137 1369 1822
Galgadungic 2 2366 1063 1832
Karnic 6 2851 1610 2342
Maric 9 929 1290 1077
Paman 21 4918 2403 3887
South-West 23 3103 2453 2837
Waka-Kabic 4 2270 1187 1826
Wiradhuric 3 1129 1193 1155
Worimi 2 2473 1237 1966
Yidinic 2 1237 1015 1146
Yuin 3 1503 1306 1422
Yuulngu 16 1555 1991 1734
WestBarkly 3 2631 1442 2144
Wororan 6 2183 1599 1944
Yiwaidjan 4 2882 1401 2275
Yiwaidjic 2 1407 1066 1267

Austronesian 974 3633 6455 4790
Atayalic 2 2664 1269 2092
EastFormosan 4 2392 1489 2022
Malayo-Polynesian 954 3024 6334 4381
Celebic 61 1796 2565 2111
Eastern 44 1710 2120 1878
Kaili-Pamona 3 1076 1033 1058
Tomini-Tolitoli 12 1468 1705 1565
Central-Eastern 581 3111 5655 4154
CentralMalayo-Polynesian 108 2415 3338 2793
EasternMalayo-Polynesian 472 3803 5426 4468
GreaterBarito 57 2031 2450 2203
East 26 1881 1832 1861
Sama-Bajaw 22 1489 1556 1516
West 8 1087 1428 1227
Javanese 3 566 1030 756
Lampung 24 785 1679 1152
LandDayak 3 1510 1151 1363
Malayo-Sumbawan 34 1845 2445 2091
NorthandEast 32 1898 2365 2089
NorthBorneo 17 2016 2047 2029
Melanau-Kajang 2 1372 946 1197
NorthSarawakan 10 2172 1755 2001
Sabahan 5 1333 1269 1307
NorthwestSumatra-BarrierIslands 4 1822 1193 1564
Philippine 151 1830 3463 2500
Bashiic 10 717 1473 1027
Bilic 8 1633 1397 1536
CentralLuzon 3 1252 1042 1166
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GreaterCentralPhilippine 75 1326 2718 1897
Minahasan 5 604 1077 798
NorthernLuzon 42 1621 2337 1915
Sangiric 6 484 1100 737
SouthSulawesi 12 970 1545 1206
Bugis 3 884 1074 962
Makassar 5 558 1140 797
Northern 4 345 1057 637

NorthwestFormosan 2 2204 1220 1801
Tsouic 3 2291 1287 1879
WesternPlains 4 2586 1767 2250
CentralWesternPlains 3 2431 1688 2126

Border 16 3453 2201 2940
Taikat 8 2404 1681 2108
Waris 8 2261 1735 2045

CentralSolomons 5 3677 1403 2745
EastBirdsHead-Sentani 13 6615 2047 4742

EastBirdsHead 3 3590 1299 2651
Sentani 9 4101 1606 3078

EastGeelvinkBay 4 3979 1220 2848
EasternTrans-Fly 39 3257 2359 2889
Kaure 2

KaureProper 2 2665 1180 2056
LakesPlain 26 5279 2230 4029

Rasawa-Saponi 2 3037 1003 2203
Tariku 22 3541 1999 2909

LeftMay 3 2665 1039 1998
Mairasi 4 1196 1287 1233
Nimboran 5 2059 1220 1715
NorthBougainville 2 2925 1175 2208
Pauwasi 7 4102 1794 3156

Eastern 3 2842 1453 2273
Western 4 1774 1271 1568

Piawi 7 3203 1564 2531
Ramu-LowerSepik 20 6942 2500 5121

LowerSepik 9 3411 2032 2846
Ramu 9 4000 1757 3080

Sepik 28 4827 2693 3952
Ndu 9 1227 1242 1233
Nukuma 2 1791 1105 1510
Ram 2 1791 1006 1469
SepikHill 10 3538 1934 2880

Sko 14 4478 1628 3310
Krisa 8 2400 1315 1955
Vanimo 6 1798 1071 1500

SouthBougainville 3 3054 1273 2324
Buin 2 1744 1135 1494

South-CentralPapuan 20 6232 2326 4631
Morehead-UpperMaro 7 5353 1688 3850
Pahoturi 6 2044 1493 1818
Yelmek-Maklew 4 1468 1074 1306

Tor-Kwerba 14 4435 2106 3480
GreaterKwerba 9 4109 1651 3101
Kwerba 6 3852 1394 2844
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Orya-Tor 5 3693 1555 2816
Torricelli 26 5754 2876 4574

Kombio-Arapesh 8 3356 1821 2727
Marienberg 9 3339 1991 2786
Monumbo 2 1867 939 1487
Wapei-Palei 5 5386 1612 3839

Trans-NewGuinea 412 6609 5538 6170
Angan 2
NuclearAngan 2 4523 1021 3087
Asmat-Kamoro 8 2189 1445 1884
Asmat 4 1033 1074 1050
Sabakor 2 567 891 700
Binanderean 5
Binandere 5 1842 1366 1647
Bosavi 15 2349 1865 2151
Chimbu-Wahgi 10 3470 1701 2745
Chimbu 5 1635 1266 1484
Hagen 3 1505 926 1268
Jimi 2 912 959 931
Duna-Bogaya 2 3004 968 2169
EastStrickland 7 1401 1297 1358
Eleman 9 4851 1465 3463
NuclearEleman 6 1256 1198 1232
Engan 14 2762 1978 2441
Enga 8 2406 1748 2136
Angal-Kewa 4 1555 1146 1387
Finisterre-Huon 19 4136 2308 3387
Finisterre 5 2868 1428 2278
Huon 14 3044 1995 2614
Gogodala-Suki 8 2827 1440 2258
Gogodala 7 1494 1326 1425
InlandGulf 3 2867 1124 2152
Minanibai 2 2197 981 1698
Kainantu-Goroka 24 4847 2608 3929
Gorokan 14 3186 2248 2801
Kainantu 10 3105 1786 2564
Kayagar 4 1285 1063 1194
Kiwaian 14 1436 1789 1581
Kolopom 3 2892 1113 2163
Madang 101 4573 3852 4277
Croisilles 55 4107 3113 3699
RaiCoast 30 3511 2640 3154
SouthAdelbertRange 15 4165 2197 3358
Marind 14 4014 1848 3126
Boazi 8 1597 1315 1481
Yaqay 3 2069 1086 1666
Mek 4 1309 1294 1303
Eastern 3 1425 1177 1323
Mombum 2 1313 1006 1187
Ok-Awyu 21 4272 2263 3448
Awyu-Dumut 9 2916 1641 2393
Ok 12 2534 1796 2231
SoutheastPapuan 25 5286 2235 4035
Goilalan 2 4233 1119 2956
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Koiarian 7 2691 1369 2149
Kwalean 6 3032 1218 2288
Mailuan 3 1238 1042 1158
Manubaran 6 1065 1185 1114
Teberan 2 2322 898 1738
Turama-Kikorian 4 3028 1235 2293
Turama-Omatian 3 1580 1122 1392
West 59 5082 3158 4293
Dani 9 1782 1632 1721
EastTimor 3 1916 1080 1573
WestBomberai 3 3497 1200 2555
WestTimor-Alor-Pantar 40 3531 2665 3176
WisselLakes 3 2060 1091 1663

WestPapuan 33 9083 2408 6346
NorthHalmahera 18 2962 1770 2473

Yele-WestNewBritain 2 6293 1097 4163

Table A.4: Dates for language groups of Pacific

Language group NOL ASJP date 3-gram date CD
Algic 27 5554 3183 4582

Algonquian 25 3343 3059 3227
Central 14 2678 2357 2546
Eastern 8 3026 2216 2694
Plains 2 5002 1151 3423

Caddoan 4 4828 1473 3452
Northern 3 3035 1278 2315

Chumash 5 1792 1426 1642
Eskimo-Aleut 9 5084 1895 3777

Eskimo 8 1842 1816 1831
Gulf 3 7859 1102 5089
Hokan 25 4915 2620 3974

Esselen-Yuman 11
Yuman 11 1865 1672 1786
Northern 13 5666 2095 4202
Karok-Shasta 5 5246 1748 3812
Pomo 7 1226 1042 1151

Iroquoian 7 4855 1998 3684
NorthernIroquoian 6 3176 1886 2647
FiveNations 5 1673 1672 1673

KiowaTanoan 3 3434 1006 2439
Mayan 76 2220 2738 2432

Cholan-Tzeltalan 9 1432 1386 1413
Cholan 5 1148 1122 1137
Tzeltalan 4 511 1006 714
Huastecan 2 1257 946 1129
Kanjobalan-Chujean 8 1225 1326 1266
Chujean 3 1058 965 1020
Kanjobalan 5 803 1030 896
Quichean-Mamean 52 1649 2135 1848
GreaterMamean 29 1492 1729 1589
GreaterQuichean 23 981 1537 1209
Yucatecan 5 790 1071 905
Mopan-Itza 3 887 959 917
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Yucatec-Lacandon 2 601 743 659
Misumalpan 3 2774 1009 2050
Mixe-Zoque 14 1407 1551 1466

Mixe 7 900 1193 1020
Zoque 7 787 1208 960

Muskogean 6 1720 1479 1621
Eastern 4 1188 1285 1228
Western 2 345 981 606

Na-Dene 23
NuclearNa-Dene 22 8532 2145 5913
Athapaskan-Eyak 21 4203 2073 3330
Athapaskan 20 2062 1956 2019

Oto-Manguean 74 6591 3655 5387
Chiapanec-Mangue 2 2445 1195 1933
Chinantecan 4 1935 1063 1577
Mixtecan 9 4542 1471 3283
Mixtec-Cuicatec 7 3140 1313 2391
Trique 2 1024 801 933
Otopamean 7 3654 1555 2793
Otomian 5 2214 1373 1869
Popolocan 17 3036 1900 2570
Chocho-Popolocan 5 2209 1195 1793
Mazatecan 11 775 1522 1081
Subtiaba-Tlapanecan 6 948 1306 1095
Zapotecan 28 3149 2313 2806
Chatino 3 997 922 966
Zapotec 25 1676 2209 1895

Penutian 25 5522 2833 4420
Maiduan 4 1219 1100 1170
OregonPenutian 4 11886 1510 7632
CoastOregon 3 4902 1399 3466
PlateauPenutian 3 4147 1353 3001
Sahaptin 2 2725 1185 2094
Yok-Utian 11 4413 1943 3400
Utian 9 3663 1805 2901
Miwokan 7 2141 1564 1904

Salishan 20 3827 3041 3505
CentralSalish 10 2459 2131 2325
InteriorSalish 6 2980 1978 2569

Siouan 16 6178 2381 4621
SiouanProper 15 3169 2330 2825

Tequistlatecan 2 1212 997 1124
Totonacan 14 1435 1648 1522

Tepehua 3 506 1237 806
Totonac 11 546 1355 878

Uto-Aztecan 82 4018 3167 3669
NorthernUto-Aztecan 11 2576 1934 2313
Numic 7 1737 1570 1669
SouthernUto-Aztecan 71 3472 2831 3209
Aztecan 58
GeneralAztec 58 1509 2410 1878
Sonoran 13 2400 1869 2182

Wakashan 5 2781 1377 2205
Northern 2 606 717 652



i
i

“mylic_thesis” — 2013/12/19 — 20:14 — page 177 — #191 i
i

i
i

i
i

A.3 Dates of the world’s languages 177

Southern 3 1154 1225 1183
Yuki 2 2500 1000 1885

Table A.5: Dates for language groups of North and Middle America

Language group NOL ASJP date 3-gram date CD
Arauan 7 1764 1497 1655
Arawakan 49
Maipuran 49 4134 3460 3858
Aymaran 3 1057 1151 1096
Barbacoan 5 3080 1364 2376
Cayapa-Colorado 2 1419 946 1225
Coconucan 2 419 895 614
Cahuapanan 2 1185 1051 1130
Carib 18 2362 2342 2354
Northern 12 2371 1922 2187
Southern 6 2422 1689 2121
Chapacura-Wanham 2 1931 926 1519
Chibchan 22 4400 2741 3720
Aruak 4 2800 1447 2245
Guaymi 3 3286 1012 2354
Kuna 2 820 1036 909
Rama 2 5117 1124 3480
Talamanca 5 2731 1440 2202
Choco 8 2258 1392 1903
Embera 7 875 1313 1055
Chon 2 2774 1108 2091
Guahiban 5 1291 1537 1392
Jivaroan 4 678 1180 884
Katukinan 3 1965 1074 1600
Macro-Ge 26 7266 2864 5461
Ge-Kaingang 13 4989 1947 3742
Yabuti 2 1607 919 1325
Maku 8 3124 1465 2444
Mascoian 3 1718 1499 1628
Mataco-Guaicuru 10 4701 2110 3639
Guaicuruan 5 2909 1536 2346
Mataco 5 2404 1608 2078
Nambiquaran 3 2807 1235 2162
Panoan 19 1853 2268 2023
North-Central 4 2134 1360 1817
Northern 3 1099 1083 1092
South-Central 6 1853 1532 1721
Southeastern 3 920 1051 974
Quechuan 19 1717 1579 1660
QuechuaII 18 974 1440 1165
Tacanan 4 1590 1203 1431
Araona-Tacana 3 1266 1068 1185
Tucanoan 19 2699 2345 2554
EasternTucanoan 13 1241 1801 1471
WesternTucanoan 5 2156 1597 1927
Tupi 47 3585 3004 3347
Monde 5 1712 1262 1528
Munduruku 2 1480 891 1239
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Tupari 3 1850 1033 1515
Tupi-Guarani 32 1550 2492 1936
Yuruna 2 951 836 904
Uru-Chipaya 3 1520 1111 1352
Witotoan 7 5491 1813 3983
Boran 3 2271 1362 1898
Witoto 4 2903 1311 2250
Yanomam 8 1319 1547 1412
Zamucoan 3 2765 1304 2166
Zaparoan 3 3178 1399 2449

Table A.6: Dates for language groups of South America
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B APPENDIX TO EVALUATION

OF STRING SIMILARITY

MEASURES

This chapter contains the supplementary information to the tables referred in
paper V.

B.1 Results for string similarity

The tables B.1, B.2, and B.3 show the family averages of Goodman-Kruskal’s
Gamma, distinctiveness score, and WALS r for different string similarity mea-
sures.
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Family LDND LCSD LDN LCS PREFIXD PREFIX JCDD DICED DICE JCD

WF
Tor 0.7638 0.734 0.7148 0.7177 0.7795 0.7458 0.7233 0.7193 0.7126 0.7216
Chi 0.7538 0.7387 0.7748 0.7508 0.6396 0.7057 0.7057 0.7057 0.7057 0.7477
HM 0.6131 0.6207 0.5799 0.5505 0.5359 0.5186 0.4576 0.429 0.4617 0.4384
Hok 0.5608 0.5763 0.5622 0.5378 0.5181 0.4922 0.5871 0.5712 0.5744 0.5782
Tot 1 1 1 1 0.9848 0.9899 0.9848 0.9899 0.9949 0.9848
Aus 0.4239 0.4003 0.4595 0.4619 0.4125 0.4668 0.4356 0.4232 0.398 0.4125
WP 0.7204 0.7274 0.7463 0.7467 0.6492 0.6643 0.6902 0.6946 0.7091 0.697
MUM 0.7003 0.6158 0.7493 0.7057 0.7302 0.6975 0.5477 0.5777 0.6594 0.6213
Sko 0.7708 0.816 0.7396 0.809 0.7847 0.7882 0.6632 0.6944 0.6458 0.6181
ST 0.6223 0.6274 0.6042 0.5991 0.5945 0.5789 0.5214 0.5213 0.5283 0.5114
Sio 0.8549 0.8221 0.81 0.7772 0.8359 0.8256 0.772 0.7599 0.7444 0.7668
Pan 0.3083 0.3167 0.2722 0.2639 0.275 0.2444 0.2361 0.2694 0.2611 0.2306
AuA 0.5625 0.5338 0.5875 0.548 0.476 0.4933 0.5311 0.5198 0.5054 0.5299
Mar 0.9553 0.9479 0.9337 0.9017 0.9256 0.9385 0.924 0.918 0.9024 0.9106
Kad
May 0.7883 0.7895 0.7813 0.7859 0.7402 0.7245 0.8131 0.8039 0.7988 0.8121
NC 0.4193 0.4048 0.3856 0.3964 0.2929 0.2529 0.3612 0.3639 0.2875 0.2755
Kiw
Hui 0.9435 0.9464 0.9435 0.9464 0.9464 0.9435 0.8958 0.9107 0.9137 0.8988
LSR 0.7984 0.7447 0.7234 0.6596 0.7144 0.692 0.7626 0.748 0.6484 0.6775
TK 0.7757 0.7698 0.7194 0.7158 0.7782 0.7239 0.6987 0.6991 0.6537 0.6705
LP 0.6878 0.6893 0.7237 0.7252 0.6746 0.7065 0.627 0.6594 0.6513 0.6235
Que 0.737 0.7319 0.758 0.7523 0.742 0.7535 0.7334 0.7335 0.7502 0.7347
NS 0.5264 0.4642 0.4859 0.4532 0.4365 0.3673 0.5216 0.5235 0.4882 0.4968
AA 0.6272 0.6053 0.517 0.459 0.6134 0.5254 0.5257 0.5175 0.4026 0.5162
Ura 0.598 0.5943 0.6763 0.6763 0.5392 0.6495 0.7155 0.479 0.6843 0.7003
MGe 0.6566 0.6659 0.6944 0.716 0.6011 0.662 0.7245 0.7099 0.7508 0.6983
Car 0.325 0.3092 0.3205 0.3108 0.2697 0.2677 0.313 0.3118 0.2952 0.316
Bor 0.7891 0.8027 0.7823 0.7914 0.7755 0.7619 0.7846 0.8005 0.7914 0.7823
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Bos
EA 0.844 0.8532 0.8349 0.8349 0.8716 0.8899 0.8716 0.8716 0.8899 0.8899
TNG 0.6684 0.6692 0.6433 0.6403 0.643 0.6177 0.5977 0.5946 0.5925 0.5972
Dra 0.6431 0.6175 0.6434 0.6288 0.6786 0.6688 0.6181 0.6351 0.655 0.6112
IE 0.7391 0.7199 0.7135 0.6915 0.737 0.7295 0.5619 0.5823 0.6255 0.5248
OM 0.9863 0.989 0.9755 0.9725 0.9527 0.9513 0.9459 0.9472 0.9403 0.9406
Tuc 0.6335 0.623 0.6187 0.6089 0.6189 0.6153 0.5937 0.5983 0.5917 0.5919
Arw 0.5079 0.4825 0.4876 0.4749 0.4475 0.4472 0.4739 0.4773 0.4565 0.4727
NDa 0.9458 0.9578 0.9415 0.9407 0.9094 0.9121 0.8071 0.8246 0.8304 0.8009
Alg 0.5301 0.5246 0.5543 0.5641 0.4883 0.5147 0.4677 0.4762 0.5169 0.5106
Sep 0.8958 0.8731 0.9366 0.9388 0.8852 0.9048 0.8535 0.8724 0.892 0.8701
NDe 0.7252 0.7086 0.7131 0.7017 0.7002 0.6828 0.6654 0.6737 0.6715 0.6639
Pen 0.8011 0.7851 0.8402 0.831 0.8092 0.8092 0.7115 0.7218 0.7667 0.7437
An 0.2692 0.2754 0.214 0.1953 0.2373 0.1764 0.207 0.2106 0.1469 0.2036
Tup 0.9113 0.9118 0.9116 0.9114 0.8884 0.8921 0.9129 0.9127 0.9123 0.9119
Kho 0.8558 0.8502 0.8071 0.7903 0.8801 0.8333 0.8052 0.8146 0.736 0.7378
Alt 0.8384 0.8366 0.85 0.8473 0.8354 0.8484 0.8183 0.8255 0.8308 0.8164
UA 0.8018 0.818 0.7865 0.8002 0.7816 0.7691 0.8292 0.8223 0.8119 0.8197
Sal 0.8788 0.8664 0.8628 0.8336 0.8793 0.8708 0.7941 0.798 0.7865 0.7843
MZ 0.7548 0.7692 0.7476 0.7524 0.7356 0.7212 0.6707 0.6779 0.6731 0.6683

Table B.1: GE for families and measures above average.
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Family JCDD JCD TRIGRAMD DICED IDENTD PREFIXD LDND LCSD LDN

Bos 15.0643 14.436 7.5983 10.9145 14.4357 10.391 8.6767 8.2226 4.8419
NDe 19.8309 19.2611 8.0567 13.1777 9.5648 9.6538 10.1522 9.364 5.2419
NC 1.7703 1.6102 0.6324 1.1998 0.5368 1.0685 1.3978 1.3064 0.5132
Pan 24.7828 22.4921 18.5575 17.2441 12.2144 13.7351 12.7579 11.4257 6.8728
Hok 10.2645 9.826 3.6634 7.3298 4.0392 3.6563 4.84 4.6638 2.7096
Chi 4.165 4.0759 0.9642 2.8152 1.6258 2.8052 2.7234 2.5116 1.7753
Tup 15.492 14.4571 9.2908 10.4479 6.6263 8.0475 8.569 7.8533 4.4553
WP 8.1028 7.6086 6.9894 5.5301 7.0905 4.0984 4.2265 3.9029 2.4883
AuA 7.3013 6.7514 3.0446 4.5166 3.4781 4.1228 4.7953 4.3497 2.648
An 7.667 7.2367 4.7296 5.3313 2.5288 4.3066 4.6268 4.3107 2.4143
Que 62.227 53.7259 33.479 29.7032 27.1896 25.9791 23.7586 21.7254 10.8472
Kho 6.4615 6.7371 3.3425 4.4202 4.0611 3.96 3.8014 3.3776 2.1531
Dra 18.5943 17.2609 11.6611 12.4115 7.3739 10.2461 9.8216 8.595 4.8771
Aus 2.8967 3.7314 1.5668 2.0659 0.7709 1.8204 1.635 1.5775 1.4495
Tuc 25.9289 24.232 14.0369 16.8078 11.6435 12.5345 12.0163 11.0698 5.8166
Ura 6.5405 6.1048 0.2392 1.6473 -0.0108 3.4905 3.5156 3.1847 2.1715
Arw 6.1898 6.0316 4.0542 4.4878 1.7509 2.9965 3.5505 3.3439 2.1828
May 40.1516 37.7678 17.3924 22.8213 17.5961 14.4431 15.37 13.4738 7.6795
LP 7.5669 7.6686 3.0591 5.3684 5.108 4.8677 4.3565 4.2503 2.8572
OM 4.635 4.5088 2.8218 3.3448 2.437 2.6701 2.7328 2.4757 1.3643
Car 15.4411 14.6063 9.7376 10.6387 5.1435 7.7896 9.1164 8.2592 5.0205
TNG 1.073 1.216 0.4854 0.8259 0.5177 0.8292 0.8225 0.8258 0.4629
MZ 43.3479 40.0136 37.9344 30.3553 36.874 20.4933 18.2746 16.0774 9.661
Bor 9.6352 9.5691 5.011 6.5316 4.1559 6.5507 6.3216 5.9014 3.8474
Pen 5.4103 5.252 3.6884 3.8325 2.3022 3.2193 3.1645 2.8137 1.5862
MGe 4.2719 4.0058 1.0069 2.5482 1.6691 2.0545 2.4147 2.3168 1.1219
ST 4.1094 3.8635 0.9103 2.7825 2.173 2.7807 2.8974 2.7502 1.3482
Tor 3.2466 3.1546 2.2187 2.3101 1.7462 2.1128 2.0321 1.9072 1.0739
TK 15.0085 13.4365 5.331 7.7664 7.5326 8.1249 7.6679 6.9855 2.8723
IE 7.3831 6.7064 1.6767 2.8031 1.6917 4.1028 4.0256 3.6679 1.4322
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Alg 6.8582 6.737 4.5117 5.2475 1.2071 4.5916 5.2534 4.5017 2.775
NS 2.4402 2.3163 1.1485 1.6505 1.1456 1.321 1.3681 1.3392 0.6085
Sko 6.7676 6.3721 2.5992 4.6468 4.7931 5.182 4.7014 4.5975 2.5371
AA 1.8054 1.6807 0.7924 1.2557 0.4923 1.37 1.3757 1.3883 0.6411
LSR 4.0791 4.3844 2.2048 2.641 1.5778 2.1808 2.1713 2.0826 1.6308
Mar 10.9265 10.0795 8.5836 7.1801 6.4301 5.0488 4.7739 4.5115 2.8612
Alt 18.929 17.9969 6.182 9.1747 7.2628 9.4017 8.8272 7.9513 4.1239
Sep 6.875 6.5934 2.8591 4.5782 4.6793 4.3683 4.1124 3.8471 2.0261
Hui 21.0961 19.8025 18.4869 14.7131 16.1439 12.4005 10.2317 9.2171 4.9648
NDa 7.6449 7.3732 3.2895 4.8035 2.7922 5.7799 5.1604 4.8233 2.3671
Sio 13.8571 12.8415 4.2685 9.444 7.3326 7.8548 7.9906 7.1145 4.0156
Kad 42.0614 40.0526 27.8429 25.6201 21.678 17.0677 17.5982 15.9751 9.426
MUM 7.9936 7.8812 6.1084 4.7539 4.7774 3.8622 3.4663 3.4324 2.1726
WF 22.211 20.5567 27.2757 15.8329 22.4019 12.516 11.2823 10.4454 5.665
Sal 13.1512 12.2212 11.3222 9.7777 5.2612 7.4423 7.5338 6.7944 3.4597
Kiw 43.2272 39.5467 46.018 30.1911 46.9148 20.2353 18.8007 17.3091 10.3285
UA 21.6334 19.6366 10.4644 11.6944 4.363 9.6858 9.4791 8.9058 4.9122
Tot 60.4364 51.2138 39.4131 33.0995 26.7875 23.5405 22.6512 21.3586 11.7915
HM 8.782 8.5212 1.6133 4.9056 4.0467 5.7944 5.3761 4.9898 2.8084
EA 27.1726 25.2088 24.2372 18.8923 14.1948 14.2023 13.7316 12.1348 6.8154

Average 15.0501 13.9673 9.448 9.4416 8.163 7.5359 7.3189 6.7042 3.7943

Table B.2: Dist for families and measures above average
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NDe 0.5761 0.5963 0.5556 0.5804 0.5006 0.4749 0.4417 0.4372 0.4089 0.412 0.2841
Bos
NC 0.4569 0.4437 0.4545 0.4398 0.3384 0.3349 0.3833 0.3893 0.3538 0.3485 0.2925
Hok 0.8054 0.8047 0.8048 0.8124 0.6834 0.6715 0.7987 0.8032 0.7629 0.7592 0.5457
Pan
Chi 0.5735 0.5775 0.555 0.5464 0.5659 0.5395 0.5616 0.5253 0.5593 0.5551 0.4752
Tup 0.7486 0.7462 0.7698 0.7608 0.6951 0.705 0.7381 0.7386 0.7136 0.7125 0.6818
WP 0.6317 0.6263 0.642 0.6291 0.5583 0.5543 0.5536 0.5535 0.5199 0.5198 0.5076
AuA 0.6385 0.6413 0.5763 0.5759 0.6056 0.538 0.5816 0.5176 0.5734 0.5732 0.5147
Que
An 0.1799 0.1869 0.1198 0.1003 0.1643 0.0996 0.1432 0.0842 0.1423 0.1492 0.1094
Kho 0.7333 0.7335 0.732 0.7327 0.6826 0.6821 0.6138 0.6176 0.5858 0.582 0.4757
Dra 0.5548 0.5448 0.589 0.5831 0.5699 0.6006 0.5585 0.589 0.5462 0.5457 0.5206
Aus 0.2971 0.2718 0.3092 0.3023 0.2926 0.3063 0.2867 0.257 0.2618 0.2672 0.2487
Tuc
Ura 0.4442 0.4356 0.6275 0.6184 0.4116 0.6104 0.2806 0.539 0.399 0.3951 0.1021
Arw
May
LP 0.41 0.4279 0.4492 0.4748 0.3864 0.4184 0.3323 0.336 0.3157 0.3093 0.1848
OM 0.8095 0.817 0.7996 0.7988 0.7857 0.7852 0.7261 0.7282 0.6941 0.6921 0.6033
Car
MZ
TNG 0.5264 0.5325 0.4633 0.4518 0.5 0.472 0.469 0.4579 0.4434 0.4493 0.3295
Bor
Pen 0.8747 0.8609 0.8662 0.8466 0.8549 0.8505 0.8531 0.8536 0.8321 0.8308 0.7625
MGe 0.6833 0.6976 0.6886 0.6874 0.6086 0.6346 0.6187 0.6449 0.6054 0.6052 0.4518
ST 0.5647 0.5596 0.5435 0.5261 0.5558 0.5412 0.4896 0.4878 0.4788 0.478 0.3116
IE 0.6996 0.6961 0.6462 0.6392 0.6917 0.6363 0.557 0.5294 0.5259 0.5285 0.4541
TK 0.588 0.58 0.5004 0.4959 0.5777 0.4948 0.5366 0.4302 0.5341 0.535 0.4942
Tor 0.4688 0.4699 0.4818 0.483 0.4515 0.4602 0.4071 0.4127 0.375 0.3704 0.3153
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Alg 0.3663 0.3459 0.4193 0.4385 0.3456 0.3715 0.2965 0.3328 0.291 0.2626 0.1986
NS 0.6118 0.6072 0.5728 0.5803 0.5587 0.5118 0.578 0.5434 0.5466 0.5429 0.4565
Sko 0.8107 0.8075 0.806 0.7999 0.7842 0.7825 0.6798 0.6766 0.6641 0.6664 0.5636
AA 0.6136 0.6001 0.4681 0.431 0.6031 0.4584 0.5148 0.3291 0.4993 0.4986 0.4123
LSR 0.5995 0.5911 0.6179 0.6153 0.5695 0.5749 0.5763 0.5939 0.5653 0.5529 0.5049
Mar 0.654 0.6306 0.6741 0.6547 0.6192 0.6278 0.568 0.5773 0.5433 0.5366 0.4847
Alt 0.8719 0.8644 0.8632 0.8546 0.8634 0.8533 0.7745 0.7608 0.75 0.7503 0.6492
Hui 0.6821 0.68 0.6832 0.6775 0.6519 0.6593 0.5955 0.597 0.5741 0.5726 0.538
Sep 0.6613 0.656 0.6662 0.6603 0.6587 0.6615 0.6241 0.6252 0.6085 0.6079 0.5769
NDa 0.6342 0.6463 0.6215 0.6151 0.6077 0.5937 0.501 0.5067 0.4884 0.4929 0.4312
Sio
Kad
WF
MUM
Sal 0.6637 0.642 0.6681 0.6463 0.6364 0.6425 0.5423 0.5467 0.5067 0.5031 0.4637
Kiw
UA 0.9358 0.9332 0.9296 0.9261 0.9211 0.9135 0.9178 0.9148 0.8951 0.8945 0.8831
Tot
EA 0.6771 0.6605 0.6639 0.6504 0.6211 0.6037 0.5829 0.5899 0.5317 0.5264 0.4566
HM

Average 0.619 0.6151 0.6126 0.6069 0.5859 0.5784 0.5495 0.5449 0.5322 0.5302 0.4495

Table B.3: RW for families and measures above average.
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B.2 Plots for length normalization

The following hexagonal binned plots show the relation between LD and length
for word pairs from the Dravidian language family.

Figure B.1: Hexagonally binned plot of same meaning-meaning LD and maximum
length.
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Figure B.2: Hexagonally binned plot of same meaning-meaning LD and average
length.
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Figure B.3: Hexagonally binned plot different meaning-meaning LD and maximum
length.
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Figure B.4: Hexagonally binned plot different meaning-meaning LD and average
length.


