
HOW GOOD ARE TYPOLOGICAL DISTANCES FOR DETERMINING
GENEALOGICAL RELATIONSHIPS AMONG LANGUAGES?

TARAKA RAMA1 AND PRASANTH KOLACHINA2

1 SPRÅKBANKEN, UNIVERSITY OF GOTHENBURG & 2 LANGUAGE TECHNOLOGIES RESEARCH CENTRE, IIIT-HYDERABAD

INTRODUCTION
• Language family: There are more than 7000

languages in this world (Lewis 2009), which
fall into more than 140 genetic families.

• Typological relatedness: Languages can
also share structurally common features
such as word order, similar phoneme inventory
size and morphology. But typological relat-
edness does not imply genetic relation be-
tween languages.

• In computational linguistics, genealogical
distances between two language families
have been shown to be useful for predicting
the difficulty of machine translation (Birch
et al. 2008).

RESOURCES
• WALS: The WALS database a has typologi-

cal features for 2676 languages of 144 types.
We removed entries for all languages with
less than 25 attested features and features
with less than 10% attestations (Georgi et al.
2010). Each of the WALS features (binary or
multi-valued) are also binarized by record-
ing presence or absence of a particular fea-
ture value.

• ASJP: A database of Swadesh word
lists (Swadesh 1952) (short concept mean-
ing list) for more than 58% of the world’s
languages (Brown et al. 2008).
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CONTRIBUTIONS
• Do we really need a clustering algorithm to

measure the internal classification accuracy
of a language family?

• How well do the typological distances
within a family correlate with the lexical
distances derived from ASJP lists?

• Given that there are more than dozen vector
similarity measures, which vector similarity
measure is the best for the above mentioned
tasks?

PREVIOUS WORK
• Daume III (2009) and Georgi et al. (2010) use

typological features from WALS to investi-
gate relation between phylogenetic groups
and feature stability.

• Georgi et al. (2010) motivate the use of clus-
ters derived from typological distances to
project linguistic resources from “resource-
rich” to “low-resource” languages.

– Do not take into account geographical
bias in the dataset.

EXPERIMENTS

• Distances between feature vectors from the
WALS typological database are computed
using 15 different similarity measures.

• For each similarity measure

– The typological distance matrix is
compared to a 2D WALS classification
matrix

– Pair-wise correlation between the ty-
pological distance matrix and the lex-
ical distance matrix used in ASJP clas-
sification.

– ASJP distance between two languages
is computed as average pair-wise
length-normalized Levenshtein dis-
tance (LDND).
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Austronesian
Altaic

Mayan
Australian

Uto-Aztecan
Sino-Tibetan

Arawakan
Austro-Asiatic
Indo-European
Oto-Manguean

Trans-New Guinea
Nilo-Saharan

Uralic
Tupian

Niger-Congo
Afro-Asiatic

Penutian
Nakh-Daghestanian

• Internal classification accuracy using
point-biserial correlation shown above.

• Australian, Austro-Asiatic, Indo-
European and, Sino-Tibetan language
families, except for ‘russellrao’.

• The worst performing language family is
Tupian. Tupian has 5 genera with one
language in each and a single genus com-
prising the rest of family.

• None of the vector similarity measures
seem to perform well for Austronesian
and Niger-Congo families.
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Uto-Aztecan

Nakh-Daghestanian
Sino-Tibetan

Austro-Asiatic
Uralic

Indo-European
Oto-Manguean

Hokan
Trans-New Guinea

Nilo-Saharan

Tupian
Niger-Congo
Afro-Asiatic

• Correlation between typological distance
matrices and distance matrix obtained
using lexicostatistical lists from ASJP.

• Pairwise correlation ρ is high across
Australian, Sino-Tibetan, Uralic, Indo-
European and Niger-Congo families.

• The Hokan family shows the lowest
amount of correlations across all distance
measures.
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CONCLUSIONS AND FUTURE WORK
• Choosing the right vector similarity measure when calculating typological distances makes a dif-

ference in the internal classification accuracy.
• Choice of similarity measure does not influence the correlation between WALS distances and

LDND distances within a family.
• Combination of a smaller set of typological features (from the ranking of Wichmann & Holman

(2009)) and right similarity measure might achieve higher accuracies.


