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1 Introduction

Historical linguistics, the oldest branch of modern linguistics, deals with language-relatedness 

and  language  change  across  space  and  time.  Historical  linguists  apply  the  widely-tested 

comparative method [Durie and Ross, 1996] to establish relationships between languages to 

posit  a  language  family and  to  reconstruct  the  proto-language  for  a  language  family.1 

Although historical linguistics has parallel origins with biology [Atkinson and Gray, 2005], 

unlike the biologists,  mainstream historical linguists  have seldom been enthusiastic about 

using quantitative methods for the discovery of language relationships or investigating the 

structure of a language family, except for Kroeber and Chrétien [1937] and Ellegård [1959]. 

A short  period  of  enthusiastic  application  of  quantitative  methods  initiated  by  Swadesh 

[1950] ended with the heavy criticism levelled against it by Bergsland and Vogt [1962]. The 

field of computational historical linguistics did not receive much attention again until the 

beginning  of  the  1990s,  with  the  exception  of  two noteworthy  doctoral  dissertations,  by 

Sankoff [1969] and Embleton [1986].

In traditional lexicostatistics, as introduced by Swadesh [1952], distances between languages 

are based on human expert  cognacy judgments of items in standardized word lists, e.g., the 

Swadesh lists  [Swadesh,  1955].  In  the  terminology of  historical  linguistics,  cognates are 

related  words  across  languages  that  can  be  traced  directly  back  to  the  proto-language. 

Cognates are identified through regular sound correspondences. Sometimes cognates have 

similar surface form and related meanings. Examples of such revealing kind of cognates are: 

English  German ∼ night  ∼ Nacht ‘night’ and hound  ∼ Hund ‘dog’. If a word has undergone 

many changes then the relatedness is not obvious from visual inspection and one needs to 

look into the history of the word to exactly understand the sound changes which resulted in 

the synchronic form. For instance, the English  Hindi ∼ wheel  ∼ chakra ‘wheel’ are cognates 

and can be traced back to the proto-Indo-European root k
w
ek

w
lo-.

1 The Indo-European family is a classical case of the successful application of comparative method which 
establishes a tree relationship between some of the most widely spoken languages in the world.



Recently, some researchers have turned to approaches more amenable to automation, hoping 

that large-scale lexicostatistical language classification will thus become feasible. The ASJP 

(Automated  Similarity  Judgment  Program)  project2 represents  such  an  approach,  where 

automatically estimated distances between languages are provided as input to phylogenetic 

programs originally developed in computational biology [Felsenstein, 2004], for the purpose 

of inferring genetic relationships among organisms.

As noted above, traditional lexicostatistics assumes that the cognate judgments for a group of 

languages  have  been  supplied  beforehand.  Given  a  standardized  word  list,  consisting  of 

40–100 items, the distance between a pair of languages is defined as the percentage of shared  

cognates subtracted from 100%. This procedure is applied to all pairs of languages under 

consideration,  to  produce  a  pairwise  inter-language  distance  matrix.  This  inter-language 

distance matrix is then supplied to a tree-building algorithm such as Neighbor-Joining (NJ; 

Saitou and Nei, 1987) or a clustering algorithm such as Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA; Sokal and Michener, 1958) to infer a tree structure for the set of 

languages. Swadesh [1950] applies essentially this method – although completely manually – 

to the Salishan languages. The resulting “family tree” is reproduced in figure 1.

The crucial element in these automated approaches is the method used for determining the 

overall  similarity between two word lists.3 Often, this is some variant of the popular edit 

distance or Levenshtein distance (LD; Levenshtein, 1966). LD for a pair of strings is defined 

as the minimum number of symbol (character) additions, deletions and substitutions needed 

to transform one string into the other. A modified LD (called LDND) is used by the ASJP 

consortium, as  reported in  their  publications (e.g.,  Bakker  et  al.  2009 and Holman et  al. 

2008).

2  Related Work

Cognate identification and tree inference are closely related tasks in historical linguistics. 

Considering  each  task  as  a  computational  module  would  mean  that  each  cognate  set 

identified across a set of tentatively related languages feed into the refinement of the tree 

inferred  at  each  step.  In  a  critical  article,  Nichols  [1996]  points  out  that  the  historical 

2 http://email.eva.mpg.de/~wichmann/ASJPHomePage.htm
3 At this point, we use “word list” and “language” interchangeably. Strictly speaking, a language, as 

identified by its ISO 639-3 code, can have as many word lists as it has recognized (described) varieties, i.e., 
doculects [Nordhoff and Hammarström, 2011].



linguistics  enterprise,  since  its  beginning,  always  used  a  refinement  procedure  to  posit 

relatedness and tree structure for a set of tentatively related languages.4 The inter-language 

distance approach to tree-building, is incidentally straightforward and comparably accurate in 

comparison  to  the  computationally  intensive  Bayesian-based  tree-inference  approach  of 

Greenhill and Gray [2009].5

The inter-language distances are either an aggregate score of the pairwise item distances or 

based on a distributional similarity score. The string similarity measures used for the task of 

cognate  identification  can also be  used  for  computing  the similarity  between two lexical 

items for a particular word sense.
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Figure 1: Salishan language family box-diagram from Swadesh 1950.

2.1  Cognate identification

The  task  of  automatic  cognate  identification  has  received  a  lot  of  attention  in  language 

technology.  Kondrak  [2002a]  compares  a  number  of  algorithms  based  on  phonetic  and 

orthographical similarity for judging the cognateness of a word pair. His work surveys string 

similarity/distance  measures  such  as  edit  distance,  dice  coefficient,  and longest  common 

subsequence ratio (LCSR) for the task of cognate identification. It has to be noted that, until 

recently [Hauer and Kondrak, 2011, List, 2012], most of the work in cognate identification 

focused on determining the cognateness between a word pair and not among a set of words 

sharing the same meaning.

Ellison  and  Kirby  [2006]  use  Scaled  Edit  Distance  (SED)6 for  computing  intra-lexical 

similarity for estimating language distances based on the dataset of Indo-European languages 

prepared by Dyen et al. [1992]. The language distance matrix is then given as input to the NJ 

algorithm – as implemented in the PHYLIP package [Felsenstein, 2002] – to infer a tree for 

87 Indo-European languages. They make a qualitative evaluation of the inferred tree against 

the standard Indo-European tree.

Kondrak [2000] developed a string matching algorithm based on articulatory features (called 

4 This idea is quite similar to the well-known Expectation-Maximization paradigm in machine learning. 
Kondrak [2002b] employs this paradigm for extracting sound correspondences by pairwise comparisons of word 
lists for the task of cognate identification. A recent paper by Bouchard-Côté et al. [2013] employs a feed-back 
procedure for the reconstruction of Proto-Austronesian with a great success.
5  For a comparison of these methods, see Wichmann and Rama, 2014.
6  SED is defined as the edit distance normalized by the average of the lengths of the pair of strings.



ALINE) for computing the similarity between a word pair. ALINE was evaluated for the task 

of  cognate  identification  against  machine  learning algorithms such as  Dynamic  Bayesian 

Networks  and Pairwise HMMs for automatic  cognate identification [Kondrak and Sherif, 

2006].  Even  though  the  approach is  technically  sound,  it  suffers  due  to  the  very  coarse 

phonetic transcription used in Dyen et al.’s Indo-European dataset.7

Inkpen et al. [2005] compared various string similarity measures for the task of automatic 

cognate  identification  for  two  closely  related  languages:  English  and  French.  The  paper 

shows  an  impressive  array  of  string  similarity  measures.  However,  the  results  are  very 

language-specific,  and it  is  not clear that they can be generalized even to the rest  of the 

Indo-European family.

Petroni and Serva [2010] use a modified version of Levenshtein distance for inferring the 

trees of the Indo-European and Austronesian language families. LD is usually normalized by 

the  maximum  of  the  lengths  of  the  two  words  to  account  for  length  bias.  The  length 

normalized LD can then be used in computing distances between a pair of word lists in at  

least  two  ways:  LDN  and  LDND  (Levenshtein  Distance  Normalized  Divided).  LDN  is 

computed  as  the  sum of  the  length  normalized  Levenshtein  distance  between  the  words 

occupying the same meaning slot divided by the number of word pairs. Similarity between 

phoneme inventories and chance similarity might cause a pair of not-so related languages to 

show up as related languages. This is compensated for by computing the length-normalized 

Levenshtein distance between all the pairs of words occupying different meaning slots and 

summing the different word-pair distances.

The summed Levenshtein distance between the words occupying the same meaning slots is 

divided by the sum of Levenshtein distances between different meaning slots. The intuition 

behind this idea is that if  two languages are shown to be similar (small  distance) due to  

accidental chance similarity then the denominator would also be small and the ratio would be 

high.

If  the  languages  are  not  related  and  also  share  no  accidental  chance  similarity,  then  the 

distance  as  computed  in  the  numerator  would  be  unaffected  by  the  denominator.  If  the 

languages  are  related  then  the  distance  as  computed  in  the  numerator  is  small  anyway, 

whereas  the  denominator  would  be  large  since  the  languages  are  similar  due  to  genetic 

7 The dataset contains 200-word Swadesh lists for 95 language varieties. Available on http://www.
wordgumbo.com/ie/cmp/index.htm.



relationship and not from chance similarity. Hence, the final ratio would be smaller than the 

original distance given in the numerator.

Petroni  and  Serva  [2010]  claim  that  LDN  is  more  suitable  than  LDND  for  measuring 

linguistic distances. In reply, Wichmann et al. [2010a] empirically show that LDND performs 

better than LDN for distinguishing pairs of languages belonging to the same family from 

pairs of languages belonging to different families. 

As  noted  by  Jäger  [2014],  Levenshtein  distance  only  matches  strings  based  on  symbol 

identity whereas a  graded notion of sound similarity would be a closer approximation to 

historical linguistics as well as achieving better results at the task of phylogenetic inference.  

Jäger [2014] uses empirically determined weights between symbol pairs (from computational 

dialectometry; Wieling et al. 2009) to compute distances between ASJP word lists and finds 

that there is an improvement over LDND at the task of internal classification of languages.

2.2  Distributional similarity measures

Huffman [1998] compute pairwise language distances based on character n-grams extracted 

from  Bible  texts  in  European  and  American  Indian  languages  (mostly  from the  Mayan 

language  family).  Singh  and  Surana  [2007]  use  character  n-grams  extracted  from  raw 

comparable  corpora  of  ten  languages  from  the  Indian  subcontinent  for  computing  the 

pairwise language distances between languages belonging to two different language families 

(Indo-Aryan and Dravidian). Rama and Singh [2009] introduce a factored  language model 

based on articulatory features to induce an articulatory feature level n-gram model from the 

dataset of Singh and Surana, 2007. The feature n-grams of each language pair are compared 

using a distributional similarity measure called cross-entropy to yield a single point distance 

between the language pair. These scholars find that the distributional distances agree with the 

standard classification to a large extent.

Inspired by the development of tree similarity measures in computational biology, Pompei et 

al. [2011] evaluate the performance of LDN vs. LDND on the ASJP and Austronesian Basic 

Vocabulary databases [Greenhill  et  al.,  2008]. They compute NJ and Minimum Evolution 

trees8 for LDN as well as LDND distance matrices. They compare the inferred trees to the 

classification  given  in  the  Ethnologue [Lewis,  2009]  using  two  different  tree  similarity 

measures:  Generalized  Robinson-Foulds  distance  (GRF;  A  generalized  version  of 

8 A tree building algorithm closely related to NJ.



Robinson-Foulds  [RF]  distance;  Robinson  and  Foulds  1979)  and  Generalized  Quartet 

distance (GQD; Christiansen et al. 2006). GRF and GQD are specifically designed to account 

for the polytomous nature – a node having more than two children – of the Ethnologue trees. 

For example, the Dravidian family tree shown in figure 3 exhibits four branches radiating 

from the top node. Finally, Huff and Lonsdale [2011] compare the NJ trees from ALINE and 

LDND distance metrics to Ethnologue trees using RF distance. The authors did not find any 

significant improvement by using a linguistically well-informed similarity measure such as 

ALINE over LDND.

3  Is  LD  the  best  string  similarity  measure  for  language 

classification?

LD is only one of a number of string similarity measures used in fields such as language 

technology, information retrieval, and bio-informatics. Beyond the works cited above, to the 

best  of  our  knowledge,  there  has  been  no  study  to  compare  different  string  similarity 

measures on something like the ASJP dataset in order to determine their relative suitability 

for genealogical classification.9 In this paper we compare various string similarity measures10 

for the task of automatic language classification. We evaluate their effectiveness in language 

discrimination  through  a  distinctiveness  measure;  and  in  genealogical  classification  by 

comparing the distance matrices to the language classifications provided by WALS (World 

Atlas of Language Structures; Haspelmath et al., 2011)11 and Ethnologue.

Consequently, in this article we attempt to provide answers to the following questions:

• Out of the numerous string similarity measures listed below in section 5:

– Which measure is best suited for the tasks of distinguishing related lanugages from 

unrelated languages?

– Which is measure is best suited for the task of internal language classification?

– Is there a procedure for determining the best string similarity measure?

9 One reason for this may be that the experiments are computationally demanding, requiring several
 days for computing a single measure over the whole ASJP dataset.

10 A longer list of string similarity measures is available on: http://www.coli.uni-saarland.de/
 courses/LT1/2011/slides/stringmetrics.pdf

11 WALS does not provide a classification to all the languages of the world. The ASJP consortium
 gives a WALS-like classification to all the languages present in their database.



4 Database and language classifications

4.1 Database

The ASJP database offers a readily available, if minimal, basis for massive cross-linguistic 

investigations.  The  ASJP  effort  began  with  a  small  dataset  of  100-word  lists  for  245 

languages. These languages belong to 69 language families. Since its first version presented 

by Brown et al. [2008], the ASJP database has been going through a continuous expansion, to 

include  in  the  version  used  here  (v.  14,  released  in  2011)12 more  than  5500  word  lists 

representing  close  to  half  the  languages  spoken  in  the  world  [Wichmann  et  al.,  2011]. 

Because of the findings reported by Holman et al. [2008], the later versions of the database 

aimed to cover only the 40-item most stable Swadesh sublist, and not the 100-item list.

Each lexical item in an ASJP word list is transcribed in a broad phonetic transcription known 

as ASJP Code [Brown et al.,  2008]. The ASJP code consists of 34 consonant symbols, 7 

vowels, and four modifiers ( , ”, , $), all rendered by characters available on the English∗ ∼  

version  of  the  QWERTY keyboard.  Tone,  stress,  and  vowel  length  are  ignored  in  this 

transcription format. The three modifiers combine symbols to form phonologically complex 

segments (e.g., aspirated, glottalized, or nasalized segments).

In order to ascertain that our results would be comparable to those published by the ASJP 

group, we successfully replicated their experiments for LDN and LDND measures using the 

ASJP program and the ASJP dataset version 12 [Wichmann et al., 2010b].13 This database 

comprises reduced (40-item) Swadesh lists for 4169 linguistic varieties. All pidgins, creoles, 

mixed languages, artificial languages, proto-languages, and languages
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Figure 2: Distribution of languages in ASJP database (version 14).

extinct  before  1700  CE  were  excluded  for  the  experiment,  as  were  language  families 

represented  by less  than  10 word lists  [Wichmann et  al.,  2010a],14 as  well  as  word lists 

containing less than 28 words (70% of 40). This leaves a dataset with 3730 word lists. It 

12 The latest version is v. 16, released in 2013.
13 The original python program was created by Hagen Jung. We modified the program to handle the

 ASJP modifiers.
14 The reason behind this decision is that correlations resulting from smaller samples (less than 40

 language pairs) tend to be unreliable.



turned out that an additional 60 word lists did not have English glosses for the items, which 

meant  that  they  could  not  be  processed  by  the  program,  so  these  languages  were  also 

excluded from the analysis.

All the experiments reported in this paper were performed on a subset of version 14 of the 

ASJP database whose language distribution is shown in figure 2.15 The database has 5500 

word lists. The same selection principles that were used for version 12 (described above) 

were applied for choosing the languages to be included in our experiments. The final dataset 

for our experiments has 4743 word lists for 50 language families. We use the family names of 

the WALS [Haspelmath et al., 2011] classification.

The WALS classification is a two-level classification where each language belongs to a genus 

and a family. A genus is a genetic classification unit given by Dryer [2000] and consists of set 

of languages supposedly descended from a common ancestor which is 3000 to 3500 years 

old.  For  instance,  Indo-Aryan  languages  are  classified  as  a  separate  genus  from Iranian 

languages although, it is quite well known that both Indo-Aryan and Iranian languages are 

descended from a common proto-Indo-Iranian ancestor.

The Ethnologue classification is a multi-level tree classification for a language family. This 

classification is often criticized for being too “lumping”, i.e., too liberal in positing genetic 

relatedness between languages.  The highest node in a family tree is  the family itself  and 

languages form the lowest nodes (leaves). A internal node in the tree is not necessarily binary. 

For instance, the Dravidian language family has four branches emerging from the top node 

(see figure 3 for the Ethnologue family tree of Dravidian languages).

Family Name WN # WLs Family Name WN # WLs 
Afro-Asiatic AA 287 Mixe-Zoque MZ 15 
Algic Alg 29 MoreheadU.Maro MUM 15 
Altaic Alt 84 Na-Dene NDe 23 
Arwakan Arw 58 Nakh-Daghestanian NDa 32 
Australian Aus 194 Niger-Congo NC 834 
Austro-Asiatic AuA 123 Nilo-Saharan NS 157 
Austronesian An 1008 Otto-Manguean OM 80 
Border Bor 16 Panoan Pan 19 
Bosavi Bos 14 Penutian Pen 21 
Carib Car 29 Quechuan Que 41 

15 Available for downloading at http://email.eva.mpg.de/~wichmann/listss14.zip.



Chibchan Chi 20 Salish Sal 28 
Dravidian Dra 31 Sepik Sep 26 
Eskimo-Aleut EA 10 Sino-Tibetan ST 205 
Hmong-Mien HM 32 Siouan Sio 17 
Hokan Hok 25 Sko Sko 14 
Huitotoan Hui 14 Tai-Kadai TK 103 
Indo-European IE 269 Toricelli Tor 27 
Kadugli Kad 11 Totonacan Tot 14 
Khoisan Kho 17 Trans-NewGuinea TNG 298 
Kiwain Kiw 14 Tucanoan Tuc 32 
LakesPlain LP 26 Tupian Tup 47 
Lower-Sepik-Ramu LSR 20 Uralic Ura 29 
Macro-Ge MGe 24 Uto-Aztecan UA 103 
Marind Mar 30 West-Papuan WP 33 
Mayan May 107 WesternFly WF 38 

Table 1: Distribution of language families in ASJP database. WN and WLs stands for WALS 

Name and Word Lists.
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Figure 3: Ethnologue tree for the Dravidian language family.

5 Similarity measures

For the experiments decribed below, we have considered both string similarity measures and 

distributional  measures  for  computing  the  distance  between  a  pair  of  languages.  As 

mentioned earlier, string similarity measures work at the level of word pairs and provide an 

aggregate  score  of  the  similarity  between  word  pairs  whereas  distributional  measures 

compare the n-gram profiles between a language pair to yield a distance score.

5.1 String similarity measures

The different string similarity measures for a word pair that we have investigated are the 

following:

• IDENT returns 1 if the words are identical, otherwise it returns 0.

• PREFIX returns the length of the longest common prefix divided by the length of the longer 

word.

• DICE is defined as the number of shared bigrams divided by the total number of bigrams in 

both the words.

• LCS is defined as the length of the longest common subsequence divided by the length of 



the longer word [Melamed, 1999].

•  TRIGRAM is  defined  in  the  same  way  as  DICE but  uses  trigrams  for  computing  the 

similarity between a word pair.

•  XDICE is  defined  in  the  same way  as  DICE but  uses  “extended  bigrams”,  which  are 

trigrams without the middle letter [Brew and McKelvie, 1996].

• Jaccard’s index, JCD, is a set cardinality measure that is defined as the ratio of the number 

of shared bigrams between the two words to the ratio of the size of the union of the bigrams 

between the two words.

• LDN, as defined above.

Each word-pair similarity score is converted to its distance counterpart by subtracting the 

score from 1.0.16 Note that this conversion can sometimes result in a negative distance which 

is due to the double normalization involved in LDND.17 This distance score for a word pair is 

then  used  to  compute  the  pairwise  distance  between  a  language  pair.  The  distance 

computation between a language pair is performed as described in section 2.1. Following the 

naming convention of LDND, a suffix “D” is added to the name of each measure to indicate  

its LDND distance variant.

5.2 N-gram similarity

N-gram similarity measures are inspired by a line of work initially pursued in the context of 

information retrieval, aiming at automatic language identification in a multilingual document. 

Cavnar and Trenkle [1994] used character n-grams for text categorization. They observed that 

different  document  categories  –  including  documents  in  different  languages  –  have 

characteristic  character  n-gram  profiles.  The  rank  of  a  character  n-gram  varies  across 

different categories and documents belonging to the same category have similar character 

n-gram Zipfian distributions.

Building  on  this  idea,  Dunning  [1994,  1998]  postulates  that  each  language  has  its  own 

signature character (or phoneme; depending on the level of transcription) n-gram distribution. 

Comparing the character n-gram profiles of two languages can yield a single point distance 

between the language pair. The comparison procedure is usually accomplished through the 

use of one of the distance measures given in Singh 2006. The following steps are followed for 

16 Lin [1998] investigates three distance to similarity conversion techniques and motivates the results
 from an information-theoretical point of view. In this article, we do not investigate the effects of similarity
 to distance conversion. Rather, we stick to the traditional conversion technique.

17 Thus, the resulting distance is not a true distance metric.



extracting the phoneme n-gram profile for a language: 

• An n-gram is defined as the consecutive phonemes in a window of N . The value of N 

usually ranges from 1 to 5.

• All  n-grams are extracted for a lexical item. This step is repeated for all the lexical 

items in a word list.

• All  the  extracted  n-grams  are  mixed  and  sorted  in  the  descending  order  of  their 

frequency. The relative frequency of the n-grams are computed.

• Only the top G n-grams are retained and the rest of them are discarded. The value of 

G is determined empirically.

For a language pair, the n-gram profiles can be compared using one of the following

distance measures:

1. Out-of-Rank measure is defined as the aggregate sum of the absolute difference in the 

rank  of  the  shared  n-grams  between  a  pair  of  languages.  If  there  are  no  shared 

bigrams  between  an  n-gram  profile,  then  the  difference  in  ranks  is  assigned  a 

maximum out-of-place score.

2. Jaccard’s index is a set cardinality measure. It is defined as the ratio of the cardinality 

of the intersection of the n-grams between the two languages to the cardinality of the 

union of the two languages.

3. Dice distance is  related to Jaccard’s Index. It  is  defined as the ratio  of twice the 

number  of  shared  n-grams  to  the  total  number  of  n-grams  in  both  the  language 

profiles.

4. Manhattan distance is  defined as  the sum of  the absolute  difference between the 

relative frequency of the shared n-grams.

5. Euclidean distance is defined in a similar fashion to Manhattan distance where the 

individual terms are squared.

While replicating the original ASJP experiments on the version 12 ASJP database, we also 

tested if the above distributional measures, [1–5] perform as well as LDN. Unfortunately, the 

results were not encouraging, and we did not repeat the experiments on version 14 of the 

database. One main reason for this result is the relatively small size of the ASJP concept list, 

which provides a poor estimate of the true language signatures.

This factor speaks equally, or even more, against including another class of n-gram-based 

measures, namely information-theoretic measures such as cross entropy and KL-divergence. 



These measures have been well-studied in natural language processing tasks such as machine 

translation, natural language parsing, sentiment identification, and also in automatic language 

identification. However, the probability distributions required for using these measures are 

usually  estimated  through  maximum  likelihood  estimation  which  require  a  fairly  large 

amount of data, and the short ASJP concept lists will hardly qualify in this regard.

6 Evaluation measures

The  measures  which  we  have  used  for  evaluating  the  performance  of  string  similarity 

measures given in section 5 are the following three:

1. dist was originally suggested by Wichmann et al. [2010a], and tests if LDND is better 

than LDN at the task of distinguishing related languages from unrelated languages.

2. RW is a special case of Pearson’s r – called point biserial correlation [Tate, 1954] – 

computes the agreement between a the intra-family pairwise distances and the WALS 

classification for the family.

3. γ is related to Goodman and Kruskal’s Gamma [1954] and measures the strength of 

association between two ordinal variables. In this paper, it  is used to compute the 

level  of  agreement  between  the  pairwise  intra-family  distances  and  the  family’s 

Ethnologue classification.

6.1 Distinctiveness measure (dist)

The  dist measure  for  a  family  consists  of  three  components:  the  mean  of  the  pairwise 

distances inside a language family (din); and the mean of the pairwise distances from each 

language in a family to the rest of the language families (dout). sdout is defined as the standard 

deviation  of  all  the  pairwise  distances  used  to  compute  dout.  Finally,  dist is  defined  as 

(din-dout)/sdout.  The  resistance  of  a  string  similarity  measure  to  other  language  families  is 

reflected by the value of sdout.

A comparatively higher  dist value suggests that a string similarity measure is particularly 

resistant  to  random  similarities  between  unrelated  languages  and  performs  well  at 

distinguishing languages  belonging to  the same language family from languages in  other 

language families.

6.2 Correlation with WALS

The  WALS  database  provides  a  three-level  classification.  The  top  level  is  the  language 

family, second level is the genus and the lowest level is the language itself. If two languages 



belong to different families, then the distance is 3. Two languages that belong to different 

genera in the same family have a distance of 2. If the two languages fall in the same genus,  

they have a distance of 1. This allows us to define a distance matrix for each family based on 

WALS. The WALS distance matrix can be compared to the distance matrices of any string 

similarity measure using point biserial correlation – a special case of Pearson’s r. If a family 

has  a  single  genus  in  the  WALS classification  there  is  no  computation  of  RW and  the 

corresponding row for a family is empty in table 7.

6.3 Agreement with Ethnologue

Given a distance-matrix  d of order  N × N, where each cell  dij is the distance between two 

languages  i and  j; and an Ethnologue tree  E, the computation of  γ for a language family is 

defined as follows:

1. Enumerate all the triplets for a language family of size N. A triplet,  t for a language 

family is defined as {i, j, k}, where i ≠ j ≠ k are languages belonging to a family. A 

language family of size N has n(n-1)(n-2)/6 triplets.

2. For the members of each such triplet t, there are three lexical distances dij , dik, and djk. 

The expert classification tree E can treat the three languages {i, j, k} in four possible 

ways (| denotes a partition): {i, j | k}, {i, k | j}, {j, k | i} or can have a tie where all 

languages emanate from the same node. All ties are ignored in the computation of γ.18

3. A distance triplet  dij ,  dik,  and  djk is  said to  agree completely with an Ethnologue 

partition {i, j | k} when dij < dik and dij < djk.  A triplet that satisfies these conditions is 

counted as a concordant comparison, C; else it is counted as a discordant comparison, 

D.

4. Steps 2 and 3 are repeated for all the triplets to yield γ for a family defined as γ = 

(C−D)/(C+D). γ lies in the range [−1, 1] where a score of −1 indicates perfect C+D 

disagreement and a score of +1 indicates perfect agreement.

At this point, one might wonder about the decision for not using an off-the-shelf tree-building 

algorithm to infer a tree and compare the resulting tree with the Ethnologue classification. 

Although both Pompei et al. [2011] and Huff and Lonsdale [2011] compare  12 their inferred 

trees – based on Neighbor-Joining and Minimum Evolution algorithms – to Ethnologue trees 

using cleverly crafted tree-distance measures (GRF and GQD), they do not make the more 

18 We do not know what a tie in the gold standard indicates: uncertainty in the classification, or a
 genuine multi-way branching? Whenever the Ethnologue tree of a family is completely unresolved, it is
 shown by an empty row. For example, the family tree of Bosavi languages is a star structure. Hence,
 the corresponding row in table 5 is left empty.



intuitively useful direct comparison of the distance matrices to the Ethnologue trees. The tree 

inference algorithms use heuristics to find the best tree from the available tree space. The 

number of possible rooted, non-binary and unlabeled trees is quite large even for a language 

family of size 20 – about 256 × 106.

A tree inference algorithm uses heuristics to reduce the tree space to find the best tree that 

explains the distance matrix. A tree inference algorithm can make mistakes while searching 

for the best  tree. Moreover,  there are many variations of Neighbor-Joining and Minimum 

Evolution algorithms.19 Ideally, one would have to test the different tree inference algorithms 

and then decide the best  one for our task.  However,  the focus of this  paper rests  on the 

comparison of different  string similarity  algorithms and not on tree inference algorithms. 

Hence,  a direct comparison of a family’s distance matrix to the family’s Ethnologue tree 

circumvents the choice of the tree inference algorithm.

7 Results and discussion

In table 2 we give the results of our experiments. We only report the average results for all 

measures across the families listed in table 1. Further, we check the correlation between the 

performance of the different string similarity measures across the three evaluation measures 

by computing Spearman’s ρ. The pairwise ρ is given in table 3. The high correlation value of 

0.95 between RW and γ suggests that all the measures agree roughly on the task of internal 

classification.

The  average  scores  in  each  column  suggest  that  the  string  similarity  measures  exhibit 

different  degrees  of  performance.  How does  one  decide  which  measure  is  the  best  in  a 

column? What kind of statistical testing procedure should be adopted for deciding upon a 

measure? We address this questions through the following procedure:

1. For a column i, sort the average scores, s in descending order.

2. For a row index 1 ≤  r ≤ 16,  test  the significance of sr ≥ sr+1 through a sign test 

[Sheskin, 2003]. This test yields a p−value.

The above significant tests are not independent by themselves. Hence, we cannot reject a null 

hypothesis H0 at a significance level of α = 0.01. The α needs to be corrected for multiple 

tests. Unfortunately, the standard Bonferroni’s multiple test correction or Fisher’s Omnibus 

test works for a global null hypothesis and not at the level of a single test. We follow the  

procedure, called False Discovery Rate (FDR), given by Benjamini and Hochberg [1995] for 

19 http://www.atgc-montpellier.fr/fastme/usersguide.php



adjusting the α value for multiple tests. Given H1 . . . Hm null hypotheses and P1 . . . Pm 

p-values, the procedure works as follows:

1. Sort the Pk, 1 ≤ k ≤ m, values in ascending order. k is the rank of a p-value.

2. The adjusted α*
k  value for Pk is (k/m)α.

3. Reject all the H0s from 1, . . . , k where Pk+1 >  α*
k.

Measure Average Dist Average RW Average γ 
DICE 3.3536 0.5449 0.6575 

DICED 9.4416 0.5495 0.6607 
IDENT 1.5851 0.4013 0.2345 

IDENTD 8.163 0.4066 0.3082 
JCD 13.9673 0.5322 0.655 

JCDD 15.0501 0.5302 0.6622 
LCS 3.4305 0.6069 0.6895 

LCSD 6.7042 0.6151 0.6984 
LDN 3.7943 0.6126 0.6984 

LDND 7.3189 0.619 0.7068 
PREFIX 3.5583 0.5784 0.6747 

PREFIXD 7.5359 0.5859 0.6792 
TRIGRAM 1.9888 0.4393 0.4161 

TRIGRAMD 9.448 0.4495 0.5247 
XDICE 0.4846 0.3085 0.433 

XDICED 2.1547 0.4026 0.4838 
Average 6.1237 0.5114 0.5739 

Table 2: Average results for each string similarity measure across the 50 families. The

rows are sorted by the name of the measure.

Dist RW 
γ 0.30 0.95 
Dist 0.32 

Table 3: Spearman’s ρ between γ, RW, and Dist

The above procedure ensures that the chance of incorrectly rejecting a null hypothesis is 1 in 

20 for α = 0.05 and 1 in 100 for α = 0.01. In this experimental context, this suggests that we 

erroneously reject  0.75 true null  hypotheses  out  of  15 hypotheses for α = 0.05 and 0.15 

hypotheses for α = 0.01. We report the Dist, γ, and RW for each family in tables 5, 6, and 7. 

In each of these tables, only those measures which are above the average scores from table 2, 



are reported.

The FDR procedure for γ suggests that no sign test is significant. This is in agreement with 

the result of Wichmann et al., 2010a, who showed that the choice of LDN or LDND is quite 

unimportant for the task of internal classification. The FDR procedure for RW suggests that 

LDN > LCS, LCS > PREFIXD, DICE > JCD, and JCD > JCDD. Here A > B denotes that A is 

significantly better than B. The FDR procedure for Dist suggests that JCDD > JCD, JCD > 

TRID, DICED > IDENTD, LDND > LCSD, and LCSD > LDN.

The  results  point  towards  an  important  direction  in  the  task  of  building  computational 

systems for automatic language classification. The pipeline for such a system consists of (1) 

distinguishing  related  languages  from unrelated  languages;  and  (2)  internal  classification 

accuracy. JCDD performs the best with respect to Dist. Further, JCDD is derived from JCD 

and can be computed in O(m + n), for two strings of length m and n. In comparison, LDN is 

in  the  order  of  O(mn).  In  general,  the  computational  complexity  for  computing  distance 

between two word lists for all  the significant measures is given in table 4. Based on the 

computational complexity and the significance scores, we propose that JCDD be used for step 

1 and a measure like LDN be used for internal classification.

Measure Complexity 
JCDD CO(m + n + min(m − 1, n − 1))  
JCD lO(m + n + min(m − 1, n − 1)) 

LDND CO(mn) 
LDN lO(mn) 

PREFIXD CO(max(m, n)) 
LCSD CO(mn) 
LCS lO(mn) 

DICED CO(m + n + min(m − 2, n − 2))  
DICE lO(m + n + min(m − 2, n − 2)) 

Table 4: Computational complexity of top performing measures for computing distance

between two word lists. Given two word lists each of length l. m and n denote the lengths

of a word pair wa and wb and C = l(l − 1)/2.

8 Conclusion

In this article, we have presented the first known attempt to apply more than 20 different 

similarity (or distance) measures to the problem of genetic classification of languages on the 



basis  of  Swadesh-style  core  vocabulary  lists.  The  experiments  were  performed  on  the 

wide-coverage ASJP database (about half the world’s languages).

We  have  examined  the  various  measures  at  two  levels,  namely:  (1)  their  capability  of 

distinguishing related and unrelated languages; and (2) their performance as measures for 

internal  classification  of  related  languages.  We  find  that  the  choice  of  string  similarity 

measure (among the tested pool of measures) is not very important for the task of internal 

classification whereas the choice affects the results of discriminating related languages from 

unrelated ones.
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Appendix
Family JCDD JCD TRIGRAMD DICED IDENTD PREFIXD LDND LCSD LDN 
Bos 15.0643 14.436 7.5983 10.9145 14.4357 10.391 8.6767 8.2226 4.8419 
NDe 19.8309 19.2611 8.0567 13.1777 9.5648 9.6538 10.1522 9.364 5.2419 
NC 1.7703 1.6102 0.6324 1.1998 0.5368 1.0685 1.3978 1.3064 0.5132 
Pan 24.7828 22.4921 18.5575 17.2441 12.2144 13.7351 12.7579 11.4257 6.8728 
Hok 10.2645 9.826 3.6634 7.3298 4.0392 3.6563 4.84 4.6638 2.7096 
Chi 4.165 4.0759 0.9642 2.8152 1.6258 2.8052 2.7234 2.5116 1.7753 
Tup 15.492 14.4571 9.2908 10.4479 6.6263 8.0475 8.569 7.8533 4.4553 
WP 8.1028 7.6086 6.9894 5.5301 7.0905 4.0984 4.2265 3.9029 2.4883 
AuA 7.3013 6.7514 3.0446 4.5166 3.4781 4.1228 4.7953 4.3497 2.648 
An 7.667 7.2367 4.7296 5.3313 2.5288 4.3066 4.6268 4.3107 2.4143 
Que 62.227 53.7259 33.479 29.7032 27.1896 25.9791 23.7586 21.7254 10.8472 
Kho 6.4615 6.7371 3.3425 4.4202 4.0611 3.96 3.8014 3.3776 2.1531 
Dra 18.5943 17.2609 11.6611 12.4115 7.3739 10.2461 9.8216 8.595 4.8771 
Aus 2.8967 3.7314 1.5668 2.0659 0.7709 1.8204 1.635 1.5775 1.4495 
Tuc 25.9289 24.232 14.0369 16.8078 11.6435 12.5345 12.0163 11.0698 5.8166 
Ura 6.5405 6.1048 0.2392 1.6473 -0.0108 3.4905 3.5156 3.1847 2.1715 
Arw 6.1898 6.0316 4.0542 4.4878 1.7509 2.9965 3.5505 3.3439 2.1828 
May 40.1516 37.7678 17.3924 22.8213 17.5961 14.4431 15.37 13.4738 7.6795 
LP 7.5669 7.6686 3.0591 5.3684 5.108 4.8677 4.3565 4.2503 2.8572 
OM 4.635 4.5088 2.8218 3.3448 2.437 2.6701 2.7328 2.4757 1.3643 
Car 15.4411 14.6063 9.7376 10.6387 5.1435 7.7896 9.1164 8.2592 5.0205 
TNG 1.073 1.216 0.4854 0.8259 0.5177 0.8292 0.8225 0.8258 0.4629 
MZ 43.3479 40.0136 37.9344 30.3553 36.874 20.4933 18.2746 16.0774 9.661 
Bor 9.6352 9.5691 5.011 6.5316 4.1559 6.5507 6.3216 5.9014 3.8474 
Pen 5.4103 5.252 3.6884 3.8325 2.3022 3.2193 3.1645 2.8137 1.5862 
MGe 4.2719 4.0058 1.0069 2.5482 1.6691 2.0545 2.4147 2.3168 1.1219 
ST 4.1094 3.8635 0.9103 2.7825 2.173 2.7807 2.8974 2.7502 1.3482 
Tor 3.2466 3.1546 2.2187 2.3101 1.7462 2.1128 2.0321 1.9072 1.0739 
TK 15.0085 13.4365 5.331 7.7664 7.5326 8.1249 7.6679 6.9855 2.8723 
IE 7.3831 6.7064 1.6767 2.8031 1.6917 4.1028 4.0256 3.6679 1.4322 
Alg 6.8582 6.737 4.5117 5.2475 1.2071 4.5916 5.2534 4.5017 2.775 
NS 2.4402 2.3163 1.1485 1.6505 1.1456 1.321 1.3681 1.3392 0.6085 
Sko 6.7676 6.3721 2.5992 4.6468 4.7931 5.182 4.7014 4.5975 2.5371 
AA 1.8054 1.6807 0.7924 1.2557 0.4923 1.37 1.3757 1.3883 0.6411 
LSR 4.0791 4.3844 2.2048 2.641 1.5778 2.1808 2.1713 2.0826 1.6308 
Mar 10.9265 10.0795 8.5836 7.1801 6.4301 5.0488 4.7739 4.5115 2.8612 
Alt 18.929 17.9969 6.182 9.1747 7.2628 9.4017 8.8272 7.9513 4.1239 
Sep 6.875 6.5934 2.8591 4.5782 4.6793 4.3683 4.1124 3.8471 2.0261 
Hui 21.0961 19.8025 18.4869 14.7131 16.1439 12.4005 10.2317 9.2171 4.9648 
NDa 7.6449 7.3732 3.2895 4.8035 2.7922 5.7799 5.1604 4.8233 2.3671 



Sio 13.8571 12.8415 4.2685 9.444 7.3326 7.8548 7.9906 7.1145 4.0156 
Kad 42.0614 40.0526 27.8429 25.6201 21.678 17.0677 17.5982 15.9751 9.426 
MUM 7.9936 7.8812 6.1084 4.7539 4.7774 3.8622 3.4663 3.4324 2.1726 
WF 22.211 20.5567 27.2757 15.8329 22.4019 12.516 11.2823 10.4454 5.665 
Sal 13.1512 12.2212 11.3222 9.7777 5.2612 7.4423 7.5338 6.7944 3.4597 
Kiw 43.2272 39.5467 46.018 30.1911 46.9148 20.2353 18.8007 17.3091 10.3285 
UA 21.6334 19.6366 10.4644 11.6944 4.363 9.6858 9.4791 8.9058 4.9122 
Tot 60.4364 51.2138 39.4131 33.0995 26.7875 23.5405 22.6512 21.3586 11.7915 
HM 8.782 8.5212 1.6133 4.9056 4.0467 5.7944 5.3761 4.9898 2.8084 
EA 27.1726 25.2088 24.2372 18.8923 14.1948 14.2023 13.7316 12.1348 6.8154 

Table 5: Dist for families and measures above average

Family LDND LCSD LDN LCS PREFIXD PREFIX JCDD DICED DICE JCD 
WF 
Tor 0.7638 0.734 0.7148 0.7177 0.7795 0.7458 0.7233 0.7193 0.7126 0.7216 
Chi 0.7538 0.7387 0.7748 0.7508 0.6396 0.7057 0.7057 0.7057 0.7057 0.7477 
HM 0.6131 0.6207 0.5799 0.5505 0.5359 0.5186 0.4576 0.429 0.4617 0.4384 
Hok 0.5608 0.5763 0.5622 0.5378 0.5181 0.4922 0.5871 0.5712 0.5744 0.5782 
Tot 1 1 1 1 0.9848 0.9899 0.9848 0.9899 0.9949 0.9848 
Aus 0.4239 0.4003 0.4595 0.4619 0.4125 0.4668 0.4356 0.4232 0.398 0.4125 
WP 0.7204 0.7274 0.7463 0.7467 0.6492 0.6643 0.6902 0.6946 0.7091 0.697 
MUM 0.7003 0.6158 0.7493 0.7057 0.7302 0.6975 0.5477 0.5777 0.6594 0.6213 
Sko 0.7708 0.816 0.7396 0.809 0.7847 0.7882 0.6632 0.6944 0.6458 0.6181 
ST 0.6223 0.6274 0.6042 0.5991 0.5945 0.5789 0.5214 0.5213 0.5283 0.5114 
Sio 0.8549 0.8221 0.81 0.7772 0.8359 0.8256 0.772 0.7599 0.7444 0.7668 
Pan 0.3083 0.3167 0.2722 0.2639 0.275 0.2444 0.2361 0.2694 0.2611 0.2306 
AuA 0.5625 0.5338 0.5875 0.548 0.476 0.4933 0.5311 0.5198 0.5054 0.5299 
Mar 0.9553 0.9479 0.9337 0.9017 0.9256 0.9385 0.924 0.918 0.9024 0.9106 
Kad 
May 0.7883 0.7895 0.7813 0.7859 0.7402 0.7245 0.8131 0.8039 0.7988 0.8121 
NC 0.4193 0.4048 0.3856 0.3964 0.2929 0.2529 0.3612 0.3639 0.2875 0.2755 
Kiw 
Hui 0.9435 0.9464 0.9435 0.9464 0.9464 0.9435 0.8958 0.9107 0.9137 0.8988 
LSR 0.7984 0.7447 0.7234 0.6596 0.7144 0.692 0.7626 0.748 0.6484 0.6775 
TK 0.7757 0.7698 0.7194 0.7158 0.7782 0.7239 0.6987 0.6991 0.6537 0.6705 
LP 0.6878 0.6893 0.7237 0.7252 0.6746 0.7065 0.627 0.6594 0.6513 0.6235 
Que 0.737 0.7319 0.758 0.7523 0.742 0.7535 0.7334 0.7335 0.7502 0.7347 
NS 0.5264 0.4642 0.4859 0.4532 0.4365 0.3673 0.5216 0.5235 0.4882 0.4968 
AA 0.6272 0.6053 0.517 0.459 0.6134 0.5254 0.5257 0.5175 0.4026 0.5162 
Ura 0.598 0.5943 0.6763 0.6763 0.5392 0.6495 0.7155 0.479 0.6843 0.7003 
MGe 0.6566 0.6659 0.6944 0.716 0.6011 0.662 0.7245 0.7099 0.7508 0.6983 



Car 0.325 0.3092 0.3205 0.3108 0.2697 0.2677 0.313 0.3118 0.2952 0.316 
Bor 0.7891 0.8027 0.7823 0.7914 0.7755 0.7619 0.7846 0.8005 0.7914 0.7823 
Bos 
EA 0.844 0.8532 0.8349 0.8349 0.8716 0.8899 0.8716 0.8716 0.8899 0.8899 
TNG 0.6684 0.6692 0.6433 0.6403 0.643 0.6177 0.5977 0.5946 0.5925 0.5972 
Dra 0.6431 0.6175 0.6434 0.6288 0.6786 0.6688 0.6181 0.6351 0.655 0.6112 
IE 0.7391 0.7199 0.7135 0.6915 0.737 0.7295 0.5619 0.5823 0.6255 0.5248 
OM 0.9863 0.989 0.9755 0.9725 0.9527 0.9513 0.9459 0.9472 0.9403 0.9406 
Tuc 0.6335 0.623 0.6187 0.6089 0.6189 0.6153 0.5937 0.5983 0.5917 0.5919 
Arw 0.5079 0.4825 0.4876 0.4749 0.4475 0.4472 0.4739 0.4773 0.4565 0.4727 
NDa 0.9458 0.9578 0.9415 0.9407 0.9094 0.9121 0.8071 0.8246 0.8304 0.8009 
Alg 0.5301 0.5246 0.5543 0.5641 0.4883 0.5147 0.4677 0.4762 0.5169 0.5106 
Sep 0.8958 0.8731 0.9366 0.9388 0.8852 0.9048 0.8535 0.8724 0.892 0.8701 
NDe 0.7252 0.7086 0.7131 0.7017 0.7002 0.6828 0.6654 0.6737 0.6715 0.6639 
Pen 0.8011 0.7851 0.8402 0.831 0.8092 0.8092 0.7115 0.7218 0.7667 0.7437 
An 0.2692 0.2754 0.214 0.1953 0.2373 0.1764 0.207 0.2106 0.1469 0.2036 
Tup 0.9113 0.9118 0.9116 0.9114 0.8884 0.8921 0.9129 0.9127 0.9123 0.9119 
Kho 0.8558 0.8502 0.8071 0.7903 0.8801 0.8333 0.8052 0.8146 0.736 0.7378 
Alt 0.8384 0.8366 0.85 0.8473 0.8354 0.8484 0.8183 0.8255 0.8308 0.8164 
UA 0.8018 0.818 0.7865 0.8002 0.7816 0.7691 0.8292 0.8223 0.8119 0.8197 
Sal 0.8788 0.8664 0.8628 0.8336 0.8793 0.8708 0.7941 0.798 0.7865 0.7843 
MZ 0.7548 0.7692 0.7476 0.7524 0.7356 0.7212 0.6707 0.6779 0.6731 0.6683 

Table 6: GE for families and measures above average

Family LDND LCSD LDN LCS 
PREFI
XD 

PREFIX DICED DICE JCD JCDD 
TRIGRA
MD 

NDe 0.5761 0.5963 0.5556 0.5804 0.5006 0.4749 0.4417 0.4372 0.4089 0.412 0.2841 
Bos 
NC 0.4569 0.4437 0.4545 0.4398 0.3384 0.3349 0.3833 0.3893 0.3538 0.3485 0.2925 
Hok 0.8054 0.8047 0.8048 0.8124 0.6834 0.6715 0.7987 0.8032 0.7629 0.7592 0.5457 
Pan 
Chi 0.5735 0.5775 0.555 0.5464 0.5659 0.5395 0.5616 0.5253 0.5593 0.5551 0.4752 
Tup 0.7486 0.7462 0.7698 0.7608 0.6951 0.705 0.7381 0.7386 0.7136 0.7125 0.6818 
WP 0.6317 0.6263 0.642 0.6291 0.5583 0.5543 0.5536 0.5535 0.5199 0.5198 0.5076 
AuA 0.6385 0.6413 0.5763 0.5759 0.6056 0.538 0.5816 0.5176 0.5734 0.5732 0.5147 
Que 
An 0.1799 0.1869 0.1198 0.1003 0.1643 0.0996 0.1432 0.0842 0.1423 0.1492 0.1094 
Kho 0.7333 0.7335 0.732 0.7327 0.6826 0.6821 0.6138 0.6176 0.5858 0.582 0.4757 
Dra 0.5548 0.5448 0.589 0.5831 0.5699 0.6006 0.5585 0.589 0.5462 0.5457 0.5206 
Aus 0.2971 0.2718 0.3092 0.3023 0.2926 0.3063 0.2867 0.257 0.2618 0.2672 0.2487 
Tuc 



Ura 0.4442 0.4356 0.6275 0.6184 0.4116 0.6104 0.2806 0.539 0.399 0.3951 0.1021 
Arw 
May 
LP 0.41 0.4279 0.4492 0.4748 0.3864 0.4184 0.3323 0.336 0.3157 0.3093 0.1848 
OM 0.8095 0.817 0.7996 0.7988 0.7857 0.7852 0.7261 0.7282 0.6941 0.6921 0.6033 
Car 
MZ 
TNG 0.5264 0.5325 0.4633 0.4518 0.5 0.472 0.469 0.4579 0.4434 0.4493 0.3295 
Bor 
Pen 0.8747 0.8609 0.8662 0.8466 0.8549 0.8505 0.8531 0.8536 0.8321 0.8308 0.7625 
MGe 0.6833 0.6976 0.6886 0.6874 0.6086 0.6346 0.6187 0.6449 0.6054 0.6052 0.4518 
ST 0.5647 0.5596 0.5435 0.5261 0.5558 0.5412 0.4896 0.4878 0.4788 0.478 0.3116 
IE 0.6996 0.6961 0.6462 0.6392 0.6917 0.6363 0.557 0.5294 0.5259 0.5285 0.4541 
TK 0.588 0.58 0.5004 0.4959 0.5777 0.4948 0.5366 0.4302 0.5341 0.535 0.4942 
Tor 0.4688 0.4699 0.4818 0.483 0.4515 0.4602 0.4071 0.4127 0.375 0.3704 0.3153 
Alg 0.3663 0.3459 0.4193 0.4385 0.3456 0.3715 0.2965 0.3328 0.291 0.2626 0.1986 
NS 0.6118 0.6072 0.5728 0.5803 0.5587 0.5118 0.578 0.5434 0.5466 0.5429 0.4565 
Sko 0.8107 0.8075 0.806 0.7999 0.7842 0.7825 0.6798 0.6766 0.6641 0.6664 0.5636 
AA 0.6136 0.6001 0.4681 0.431 0.6031 0.4584 0.5148 0.3291 0.4993 0.4986 0.4123 
LSR 0.5995 0.5911 0.6179 0.6153 0.5695 0.5749 0.5763 0.5939 0.5653 0.5529 0.5049 
Mar 0.654 0.6306 0.6741 0.6547 0.6192 0.6278 0.568 0.5773 0.5433 0.5366 0.4847 
Alt 0.8719 0.8644 0.8632 0.8546 0.8634 0.8533 0.7745 0.7608 0.75 0.7503 0.6492 
Hui 0.6821 0.68 0.6832 0.6775 0.6519 0.6593 0.5955 0.597 0.5741 0.5726 0.538 
Sep 0.6613 0.656 0.6662 0.6603 0.6587 0.6615 0.6241 0.6252 0.6085 0.6079 0.5769 
NDa 0.6342 0.6463 0.6215 0.6151 0.6077 0.5937 0.501 0.5067 0.4884 0.4929 0.4312 
Sio 
Kad 
WF 
MUM 
Sal 0.6637 0.642 0.6681 0.6463 0.6364 0.6425 0.5423 0.5467 0.5067 0.5031 0.4637 
Kiw 
UA 0.9358 0.9332 0.9296 0.9261 0.9211 0.9135 0.9178 0.9148 0.8951 0.8945 0.8831 
Tot 
EA 0.6771 0.6605 0.6639 0.6504 0.6211 0.6037 0.5829 0.5899 0.5317 0.5264 0.4566 
HM 

Table 7: RW for families and measures above average
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